- Academics
Electrical Engineering, B.S.
From the subway systems beneath our cities to the HD televisions on our walls to the smart phones in our pockets, innovations by electrical engineers touch every aspect of modern life. But this process of innovation is never complete, and new challenges await the electrical engineers of tomorrow.
As a student in our BS in Electrical Engineering program, you train to become a member of this next generation. Our curriculum builds on foundational mathematics and science courses with studies of analysis and design in electrical engineering. These studies often include hands-on coursework in our state-of-the-art laboratories. In addition, the variety of specialized subjects you can investigate through elective coursework — from local area networks to wireless communication and deregulated power systems — ensures a highly flexible education suited to your particular interests. Our BS in Electrical Engineering is accredited by the Engineering Accreditation Commission of ABET.
Recognizing the need for well-rounded engineers, we also emphasize strong communication and interpersonal skills. Our students develop these skills not only through required courses in the humanities and social sciences but also during team projects in design classes. Sponsored research and affiliate programs put you in a position to learn from faculty familiar with current issues.
Where possible, classroom work will challenge you to apply your knowledge to current design situations. You’ll also apply broad technical knowledge to practical problems through interdepartmental cooperation.
You can apply your electrical engineering training across a wide spectrum of fields. Our students have launched careers in electronic design, bioengineering, city planning, and astronautics. They also find opportunities in image processing, telemetry, computer design, and patent law. As they mature and develop their capabilities, their careers may move toward system engineering, management, sales, or education. Some graduates also pursue advanced studies toward a master’s or doctorate degree.
About the Program
Program Educational Objectives
The broad objectives of the Electrical Engineering Program are:
- Graduates are expected to be engaged and advancing in their professional careers in a profession that utilizes their NYU Tandon degree, in Electrical Engineering or other career path, that include industry, academia, and governmental or non-governmental organizations.
- Graduates are expected to be seeking continuous professional development and life-long learning through graduate school studies, continuing education credits and/or professional registration.
Student Outcomes
In order to prepare our students to meet these objectives after graduation the ECE department has adopted the ABET 1 to 7 criteria as the appropriate student outcomes that our curriculum is designed to foster in our students:
(1) an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
(2) an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
(3) an ability to communicate effectively with a range of audiences
(4) an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
(5) an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
(6) an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
(7) an ability to acquire and apply new knowledge as needed, using appropriate learning strategies
Minor in Electrical Engineering
You may obtain a minor in electrical engineering by taking 15 credits of ECE prefixed courses. The courses may be any ECE courses subject only to the prerequisite requirements. A grade of C- or better is required in ECE-UY 2004 and a GPA of 2.0 or better in the entire minor is required. A minimum of 8 credits in the minor must be taken at the School of Engineering. The electrical engineering minor is not open to computer engineering students.
Transfer Students
Transfer credits for courses taken at other schools are based on evaluation of content and level. Students completing the same program at another school, but in different years, may receive a different number of transfer credits. You should consult an electrical engineering undergraduate adviser for current information.
Curriculum
To fulfill the degree requirements for a Bachelor of Science in Electrical Engineering, you must complete 128 credits with a 2.0 GPA in all courses. Additional requirements include:
- A grade of C- or better in the following courses:
- 3 Credits Engineering Problem Solving and Programming CS-UY 1133
- This introductory course in engineering problem solving and computer programming is for all undergraduate engineering students without prior programming experience in any language. The course covers the fundamentals of computer programming and its underlying principles using the MATLAB programming language. Concepts and methods are illustrated by examples from various engineering disciplines. Useful numerical techniques and their applications to real-world problems in science and engineering are also discussed. ABET competencies: a, e, k.
Corequisite: EX-UY 1. - 4 Credits Digital Logic and State Machine Design CS-UY 2204
- This course covers combinational and sequential digital circuits. Topics: Introduction to digital systems. Number systems and binary arithmetic. Switching algebra and logic design. Error detection and correction. Combinational integrated circuits, including adders. Timing hazards. Sequential circuits, flipflops, state diagrams and synchronous machine synthesis. Programmable Logic Devices, PLA, PAL and FPGA. Finite-state machine design. Memory elements. A grade of C or better is required of undergraduate computer-engineering majors.
Prerequisite for Brooklyn Students: CS-UY 1114 (C- or better) or CS-UY 1133 (C- or better)
Prerequisite for Abu Dhabi Students: CS-UH 1001 (C- or better) or ENGR-UH 1000 (C- or better)
Prerequisite for Shanghai Students: CSCI-SHU 101 (C- or better) - 4 Credits Fund. of Electric Circuits ECE-UY 2004
- Fundamentals of Circuits includes circuit modeling and analysis techniques for AC, DC and transient responses. Independent and dependent sources, resistors, inductors and capacitors are modeled. Analysis techniques include Kirchhoff’s current and voltage laws, current and voltage division. Thevenin and Norton theorems, nodal and mesh analysis, and superposition. Natural and forced responses for RLC circuits, sinusoidal steady-state response and complex voltage and current (phasors) are analyzed. Alternate-week laboratory. A minimum of C- is required for students majoring in EE. Objective: fundamental knowledge of DC and AC circuit analysis.
Co-requisites for Brooklyn Engineering Students: (MA-UY 1044 or MA-UY 2034) and PH-UY 2023
Prerequisites for Abu Dhabi Students: SCIEN-AD 110, MATH-AD 116, and MATH-AD 121. ABET competencies a, c, e, k. - 4 Credits Signals and Systems ECE-UY 3054
- This course centers on linear system theory for analog and digital systems; linearity, causality and time invariance; impulse response, convolution and stability; the Laplace, z- transforms and applications to Linear Time Invariant (LTI) systems; frequency response, analog and digital filter design. Topics also include Fourier Series, Fourier Transforms and the sampling theorem. Weekly computer-laboratory projects use analysis- and design-computer packages. The course establishes foundations of linear systems theory needed in future courses; use of math packages to solve problems and simulate systems; and analog and digital filter design.
Prerequisites for Brooklyn Engineering Students: MA-UY 1044, MA-UY 2012/2132 or MA-UY 2034.
Prerequisites for Abu Dhabi Students: MATH-AD 116 and MATH-AD 121.
Prerequisites for Shanghai Students: MATH-SHU 124 and MATH-SHU 140. ABET competencies a, b, c, e, k.
- A technical GPA of 2.0 based on all courses prefixed ECE-UY, CS-UY or ECE-GY.
To see what your 4-year schedule of classes might look like if you pursued this degree, see the Typical Course Schedule section. Please pay careful attention to the notes that accompany the schedule as they are essential elements of the program requirements.
Seniors may elect graduate courses labeled ECE-GY 5XX3, but not CS-GY 5XX3. To enroll in other graduate courses, seniors must have a 2.7 GPA or better in related courses and adviser approval; juniors must have a 3.0 GPA or better and adviser approval. You are expected to meet the degree requirements in place when you first enrolled in a the School of Engineering program. Those requirements apply as long as you remain in good standing and fewer than 8 years have elapsed since you entered the program. The period for unchanged requirements is proportionately less for a transfer student.
For a EE Study Plan, please refer: EE Study Plan
Senior Design Project
In the 2-semester Senior Design Project, a required course for seniors, you will focus on an aspect of electrical engineering. In the first semester, you will develop skills using specialized laboratory equipment and computer-design packages. You will be introduced to techniques for planning projects and how to make effective presentations. You will also learn to balance such design requirements as performance, safety, reliability, and cost effectiveness.
In the final semester, you will design, build, or simulate and test a device or system to meet prescribed engineering specifications. Informal and formal written and public oral presentations will help you prepare for professional careers. Design project students frequently work in groups or pairs to develop interaction skills essential to good engineering.
Senior Thesis
Seniors with a 3.0 GPA or above may register for Senior Thesis in place of the Senior Design Project. The thesis must be design oriented. If you opt to complete a Senior Thesis, you do not need to register for either DP-1 or DP-2 but must instead:
- Complete 6 total credits of ECE-UY 397. We recommend that these credits be taken over the course of 2 semesters;
- Make a presentation to your thesis adviser that is open for other students and faculty to attend; and
- Bind your thesis according to the School of Engineering's guidelines for MS and PhD theses.
Before registering for Senior Thesis, you must arrange for a faculty member to serve as thesis adviser. Students in the Honors Program must complete a Senior Thesis, unless they have completed a MS thesis as part of their participation in the BS/MS Program. In such cases, the MS Thesis fulfills the requirement instead.
Sample Course Schedule
This schedule lists specific courses you might take as you work towards your bachelor's in Electrical Engineering. 128 credits are required to complete the degree for students beginning Fall 2016 or later.
For full curriculum:
Here for the curriculum that follows applies to students who began classes BEFORE the Fall of 2016.
Here for the curriculum that follows applies to students who began classes in the Fall of 2020 or later.
Freshman Year
Fall Semester: 16 Credits
- 4 Credits Calculus I for Engineers MA-UY 1024
- This course covers: Library of Functions, functions of one variable. Limits, derivatives of functions defined by graphs, tables and formulas, differentiation rules for power, polynomial, exponential and logarithmic functions, derivatives of trigonometric functions, the product and quotient rules, the chain rule, applications of the chain rule, maxima and minima, optimization. The definite integral, the Fundamental Theorem of Calculus and interpretations, theorems about definite integrals, anti-derivatives.
Prerequisite: Placement Exam or MA-UY 914
Corequisite: EX-UY 1 - 4 Credits Introduction to Programming & Problem Solving CS-UY 1114 5
- This course introduces problem solving and computer programming and is for undergraduate Computer Science and Computer Engineering majors who have limited prior experience in programming in any language. The course covers fundamentals of computer programming and its underlying principles using the Python programming language. Concepts and methods introduced in the course are illustrated by examples from various disciplines. ABET competencies: a,b,c, e, f, g, k
Corequisite: EX-UY 1; Anti-requisite: CS-UY 1113 - EG-UY 1003 Please refer to the bulletin for more information
- 1 Credits Engineering and Technology Forum EG-UY 1001
- In this course the notion of invention, innovation and entrepreneurship (i2e) is introduced to the students’ educational experience. Students will be exposed to elements of a research-intensive institution and diverse research performed by leading engineers, scientists, inventors and entrepreneurs.
- 4 Credits Writing As Inquiry EXPOS-UA 1
- This foundational writing course is required for CAS, Nursing, Social Work,
Steinhardt and Tandon incoming undergraduates. "Writing the Essay''
provides instruction and practice in critical reading, creative and logical
thinking, and clear, persuasive writing. Students learn to analyze and
interpret written texts, to use texts as evidence, to develop ideas, and to
write exploratory and argumentative essays. Exploration, inquiry,
reflection, analysis, revision, and collaborative learning are emphasized.
Spring Semester: 16/17 Credits
- 4 Credits Calculus II for Engineers MA-UY 1124
- This course covers techniques of integration, introduction to ordinary differential equations, improper integrals, numerical methods of integration, applications of integration, sequences, series, power series, approximations of functions via Taylor polynomials, Taylor series, functions of two variables, graphs of functions of two variables, contour diagrams, linear functions, functions of three variables.
Prerequisites: MA-UY 1024 or MA-UY 1324
Corequisite: EX-UY 1. - 3 Credits Mechanics PH-UY 1013
- This course is the first of a three-semester lecture sequence in general physics for science and engineering students. Motion of particles and systems of particles. One-dimensional motion. Vectors and two-dimensional motions. Forces and acceleration. Conservation of energy and momentum. Rotations. The free and driven harmonic oscillator. Gravitation. (This class meets four hours per week for lectures and recitation.)
Prerequisites: MA-UY 1024 or an approved equivalent. Corequisites: MA-UY 1124 or approved equivalent, and EX-UY 1 - 2 Credits Introduction to Electrical and Computer Engineering ECE-UY 1002 1
- This course introduces numerous subject areas in Electrical and Computer Engineering (power systems, electronics, computer networking, microprocessors, digital logic, embedded systems, communications, feedback control, and signal processing). Through a series of case studies and examples, the course demonstrates how each subject area applies to practical, real-world systems and devices and discusses how the areas interact with each other to implement a complete functioning system or device. Students make presentations in teams on case studies based on articles from the IEEE Spectrum Magazine and other sources. The IEEE Code of Ethics and ethics-related issues are discussed.
ABET criteria: i, h.
Prerequisites: First-year standing - 4 Credits The Advanced College Essay EXPOS-UA 2
- The course follows Writing the Essay (EW 1013) and provides advanced instruction in analyzing and interpreting written texts from a variety of academic disciplines, using written texts as evidence, developing ideas, and writing argumentative essays. It stresses analysis, argument, reflection, revision, and collaborative learning.
Prerequisite(s): EW 1013
- 3-4 Credits Math/Science Elective
Sophomore Year
Fall Semester: 16 Credits
- 4 Credits Linear Algebra and Differential Equations MA-UY 2034
- MA-UY 2034 is an introduction to ordinary differential equations and linear algebra. The course develops the techniques for the analytic and numeric solutions of ordinary differential equations (and systems) that are widely used in modern engineering and science. Linear algebra is used as a tool for solving systems of linear equations as well as for understanding the structure of solutions to linear (systems) of differential equations. Topics covered include the fundamental concepts of linear algebra such as Gaussian elimination, matrix theory, linear transformations, vector spaces, subspaces, basis, eigenvectors, eigenvalues and the diagonalization of matrices, as well as the techniques for the analytic and numeric solutions of ordinary differential equations (and systems) that commonly appear in modern engineering and science.
Prerequisite: MA-UY 1124 or MA-UY 1424. Note: Not open to students who have taken MA-UY 1044 or MA-UY 3054 or MA-UY 3083 or MA-UY 4204. - 3 Credits Electricity, Magnetism, & Fluids PH-UY 2023
- This is the second course of a three-semester lecture sequence in general physics for science and engineering students. Fluids at rest and in motion. An introduction to electric and magnetic forces and fields. Electric charge density. Electric fields from simple charge distributions. Electric potential. Capacitance. Magnetic forces. Magnetic field from a current loop. Inductance. Magnetism in matter. Current and resistance. (This class meets four hours per week for lectures and recitation.)
Prerequisites: PH-UY 1013 and MA-UY 1124 or an approved equivalent. Co-requisite: EX-UY 1 - 1 Credits General Physics Laboratory I PH-UY 2121
- PH-UY 2121 General Physics Laboratory I (0.5:1:0:1). An introductory level experimental course. Fundamental laboratory experiments in classical mechanics and electrostatics. Stresses basic experimental techniques, error analysis, and written presentation of experiment results. Experiments require progressively more detailed and sophisticated analysis. This laboratory class meets for three hours on alternate weeks.
Prerequisites: PH-UY 1013 and MA-UY 1124 or equivalent. Co-requisite: PH-UY 2023. - 4 Credits Fund. of Electric Circuits ECE-UY 2004 4
- Fundamentals of Circuits includes circuit modeling and analysis techniques for AC, DC and transient responses. Independent and dependent sources, resistors, inductors and capacitors are modeled. Analysis techniques include Kirchhoff’s current and voltage laws, current and voltage division. Thevenin and Norton theorems, nodal and mesh analysis, and superposition. Natural and forced responses for RLC circuits, sinusoidal steady-state response and complex voltage and current (phasors) are analyzed. Alternate-week laboratory. A minimum of C- is required for students majoring in EE. Objective: fundamental knowledge of DC and AC circuit analysis.
Co-requisites for Brooklyn Engineering Students: (MA-UY 1044 or MA-UY 2034) and PH-UY 2023
Prerequisites for Abu Dhabi Students: SCIEN-AD 110, MATH-AD 116, and MATH-AD 121. ABET competencies a, c, e, k. - 4 Credits Digital Logic and State Machine Design CS-UY 2204 4
- This course covers combinational and sequential digital circuits. Topics: Introduction to digital systems. Number systems and binary arithmetic. Switching algebra and logic design. Error detection and correction. Combinational integrated circuits, including adders. Timing hazards. Sequential circuits, flipflops, state diagrams and synchronous machine synthesis. Programmable Logic Devices, PLA, PAL and FPGA. Finite-state machine design. Memory elements. A grade of C or better is required of undergraduate computer-engineering majors.
Prerequisite for Brooklyn Students: CS-UY 1114 (C- or better) or CS-UY 1133 (C- or better)
Prerequisite for Abu Dhabi Students: CS-UH 1001 (C- or better) or ENGR-UH 1000 (C- or better)
Prerequisite for Shanghai Students: CSCI-SHU 101 (C- or better)
Spring Semester: 14/16 Credits
- 3-4 Credits Math/Science Elective
- 4 Credits Calculus III: Multi-dimensional Calculus MA-UY 2114
- Vectors in the plane and space. Partial derivatives with applications, especially Lagrange multipliers. Double and triple integrals. Spherical and cylindrical coordinates. Surface and line integrals. Divergence, gradient, and curl. Theorems of Gauss and Stokes.
Prerequisite: MA-UY 1124 or MA-UY 1424. Anti-requisite: MA-UY 2514 - 4 Credits Fundamentals of Electronics I ECE-UY 3114
- This course focuses on circuit models and amplifier frequency response, op-amps, difference amplifier, voltage-to-current converter, slew rate, full-power bandwidth, common-mode rejection, frequency response of closed-loop amplifier, gain-bandwidth product rule, diodes, limiters, clamps and semiconductor physics. Other topics include Bipolar Junction Transistors; small-signal models, cut-off, saturation and active regions; common emitter, common base and emitter-follower amplifier configurations; Field-Effect Transistors (MOSFET and JFET); biasing; small-signal models; common-source and common gate amplifiers; and integrated circuit MOS amplifiers. The alternate-week laboratory experiments on OP-AMP applications, BJT biasing, large signal operation and FET characteristics. The course studies design and analysis of operational amplifiers; small-signal bipolar junction transistor and field-effect transistor amplifiers; diode circuits; differential pair amplifiers and semiconductor device- physics fundamentals.
Prerequisites for Brooklyn Engineering Students: EE-UY 2024 or EE-UY 2004 (C- or better) and PH-UY 2023
Prerequisites for Abu Dhabi Students: ENGR-AD 214 and SCIEN-AD 110.
Prerequisites for Shanghai Students: EENG-SHU 251 (C- or better) and PHYS-SHU 93 or CCSC-SHU 51. ABET competencies a, b, c, e, k. - 4 Credits Data Structures and Algorithms CS-UY 1134
- This course covers abstract data types and the implementation and use of standard data structures along with fundamental algorithms and the basics of algorithm analysis. Not open to students who have taken CS-UY 2134.
Prerequisite for Brooklyn Students: CS-UY 1114 or CS-UY 1121 (C- or better)
Prerequisite for Abu Dhabi Students: CS-UH 1001 or ENGR-UH 1000
Prerequisite for Shanghai Students: CSCI-SHU 101
Corequisite for all Students: EX-UY 1
OR
- 3 Credits Introduction to Programming in C CS-UY 2163
- This course covers programming in C. Topics: The syntax, variables, expressions, working environment, printf and scanf. Function calls and returns. Branching and looping. Relational operators. Bit-wise operators. Boolean expressions. Recursion. Pointers. Data structures: Arrays, structs, lists, stacks, trees, queues. String processing. Low level memory management, dynamic memory allocation. The preprocessor. File processing : fprintf, fscanf, fseek, sscanf. Concurrency, fork, pipe, signal.
Prerequisites: (CS-UY 1114 or CS-UY 1133) and (ECE or CompE majors) or department permission. For CS majors and CS minors, this course does not count as a CS elective.
Junior Year
Fall Semester: 17/18 Credits
- 3 Credits Advanced Linear Algebra and Complex Variables MA-UY 3113
- This course provides a deeper understanding of topics introduced in MA-UY 2012 and MA-UY 2034 and continues the development of those topics, while also covering functions of a Complex Variable. Topics covered include: The Gram-Schmidt process, inner product spaces and applications, singular value decomposition, LU decomposition. Derivatives and Cauchy-Riemann equations, integrals and Cauchy integral theorem. Power and Laurent Series, residue theory.
Prerequisites: (MA-UY 2114 or MA-UY 2514) AND (MA-UY 2034). Note: Not open to students who have taken MA-UY 1533, MA-UY 3112 or MA-UY 4433. - 3 Credits Introduction to Probability ECE-UY 2233
- Standard first course in probability, recommended for those planning further work in probability or statistics. Probability of events, random variables and expectations, discrete and continuous distributions, joint and conditional distributions, moment generating functions, the central limit theorem.
Prerequisites: MA-UY 109, MA-UY 2112, OR MA-UY 2114. Note: Not open to students who have taken MA-UY 2224 or MA-UY 3012 or MA-UY 3022. - 4 Credits Signals and Systems ECE-UY 3054 4
- This course centers on linear system theory for analog and digital systems; linearity, causality and time invariance; impulse response, convolution and stability; the Laplace, z- transforms and applications to Linear Time Invariant (LTI) systems; frequency response, analog and digital filter design. Topics also include Fourier Series, Fourier Transforms and the sampling theorem. Weekly computer-laboratory projects use analysis- and design-computer packages. The course establishes foundations of linear systems theory needed in future courses; use of math packages to solve problems and simulate systems; and analog and digital filter design.
Prerequisites for Brooklyn Engineering Students: MA-UY 1044, MA-UY 2012/2132 or MA-UY 2034.
Prerequisites for Abu Dhabi Students: MATH-AD 116 and MATH-AD 121.
Prerequisites for Shanghai Students: MATH-SHU 124 and MATH-SHU 140. ABET competencies a, b, c, e, k.
- 3-4 Credits Free Elective
- 4 Credits Humanities and Social Sciences Course*
Spring Semester: 15/16 Credits
- 4 Credits Electromagnetic Waves ECE-UY 3604
- Electromagnetic wave propagation in free space and in dielectrics, starting from a consideration of distributed inductance and capacitance on transmission lines. Electromagnetic plane waves are obtained as a special case. Reflection and transmission at discontinuities are discussed for pulsed sources, while impedance transformation and matching are presented for harmonic time dependence. Snell’s law and the reflection and transmission coefficients at dielectric interfaces are derived for obliquely propagation plane waves. Guiding of waves by dielectrics and by metal waveguides is demonstrated. Alternate-week laboratory. Objectives: Establish foundations of electromagnetic wave theory applicable to antennas, transmissions lines and materials; increase appreciation for properties of materials through physical experiments.
Prerequisites for Brooklyn Engineering Students: EE-UY 2024 or EE-UY 2004 (C- or better).
Prerequisites for Abu Dhabi Students: ENGR-AD 214.
Prerequisites for Shanghai Students: EENG-SHU 251 (C- or better). ABET competencies: a, b, c, e, k.
4 Credits ECE Restricted Elective**
3-4 Credits Free Elective**
4 Credits Humanities and Social Sciences Course*
*See Footnote 2
**See Footnote 3
Senior Year
Fall Semester: 15/16 Credits
- 3 Credits Design Project I ECE 4XX3
- OR
- 3 Credits VIP-UY Course
- 1 Credits ECE Professional Development & Presentation ECE-UY 4001
- This course provides electrical and computer engineering students with concepts, theory, principles and experience in project management and project presentation. Students learn how to apply skills learned in engineering coursework to team projects in a professional environment. Prerequisites: Junior or senior status or permission of the instructor.
Restricted to Electrical and Computer Engineering majors. - 4 Credits ECE Restricted Elective**
- 3 Credits Free Elective
- 4 Credits Humanities and Social Sciences Course*
Spring Semester: 16/18 Credits
- 3 Credits Design Project II ECE 4XX3
- 3-4 Credits ECE Elective
- 3 Credits Free Elective
- 3-4 Credits Free Elective
- 4 Credits Humanities and Social Sciences Course*
Total credits required for the degree: 128
*See Footnote 2
**See Footnote 3
Footnotes
1) For transfer students and students changing major, ECE-UY 1002 is not required.
2) Choice of Humanities and Social Sciences courses must conform to university requirements.
3) The Restricted Electives must be 2 of 5 courses:
- ECE-UY 3124 Fundamentals of Electronics II
- ECE-UY 3824 Electric Energy Conversion Systems
- ECE-UY 3404 Fundamentals of Communication Theory
- ECE-UY 3064 Feedback Control
- ECE-UY 4144 Introduction to Embedded Systems Design
4) A grade of at least C- is required in CS-UY 1114 or CS-UY 1133, CS-UY 2204, ECE-UY 2004 and ECE-UY 3054.
5) CS-UY 1114 is strongly recommended, but CS-UY 1133 is also acceptable (for students changing major to ECE, etc.).