Eray Aydil

  • Chemical and Biomolecular Engineering Department Chair

  • Alstadt Lord Mark Professor

Connect

Eray Aydil

Dr. Eray S. Aydil is the Alstadt Lord Mark Professor of Chemical and Biomolecular Engineering at New York University Tandon School of Engineering. Previously he was the Ronald L. and Janet A. Christenson Chair in Renewable Energy and Executive Officer of the Department of Chemical Engineering and Materials Science at the University of Minnesota. He is a Fellow of the American Vacuum Society and Editor-in-Chief of the Journal of Vacuum Science and Technology. He received his B.S. degrees in chemical engineering and in materials science and engineering, both from U. C. Berkeley in 1986. He received his Ph.D. degree in chemical engineering in 1991 from the University of Houston. He was a postdoc at Bell Labs until 1993 when he joined the faculty of the chemical engineering department at U.C. Santa Barbara as an assistant professor. By the time he left U.C. Santa Barbara in 2005 for University of Minnesota, he was a full professor and vice chairperson. In 2005, Dr. Aydil joined the Department of Chemical Engineering and Materials Science (CEMS) at the University of Minnesota where he remained until 2018; between 2009 and 2014 he served as the Executive Officer of CEMS. In 2018 he moved to New York University Tandon School of Engineering. He has published over 200 articles and holds seven patents. In recognition of his research, he has received the Peter Mark Award and the Plasma Prize from the American Vacuum Society, the Norman Hackerman Young Author Award of the Electrochemical Society, the National Young Investigator Award of the National Science Foundation, and the Camille-Dreyfus Teacher-Scholar Award.


My group and I are interested in electronic, optoelectronic, magnetic, and catalytic materials synthesis and characterization with emphasis on understanding synthesis-structure-property-performance relations. We are motivated by fundamental questions as well as applications such as sustainable solar-to-electric energy conversion using solar cells. We use both vapor phase deposition and synthesis techniques (e.g., physical vapor deposition, plasma synthesis etc.) as well as colloidal synthesis to produce nanostructured materials, coatings, and thin films.

Recent and current projects are on 
(1) Hybrid organic-inorganic perovskite inspired materials for solar cells, and light emission and detection
(2) Plasma-assisted synthesis, and
(3) Pyrite iron disulfide (FeS2) for solar cells.

 

Research Interests
photovoltaics, solar cells, plasmas

University of Houston, 1991
Ph.D., Chemical Engineering

University of California, Berkeley 1986
B.S., Chemical Engineering, B.S., Materials Science and Engineering


 

  1. B. Voigt, L. Stolik Valor, W/ Moore, J. D. Jeremiason, J. Kakalios, E. S. Aydil and C. Leighton, “Controlled p-Type Doping of Pyrite FeS2,”  ACS Applied Materials & Interfaces 15, 24978-24988 (2023). https://doi.org/10.1021/acsami.3c04662  
  2. I. J. Cleveland , M. N. Tran, S. Kabra, K. Sandrakumar , H. Kannan, A.Sahu, and E. S. Aydil, “Physical 1 vapor deposition of Yb-doped CsPbCl3 thin films for quantum cutting,” Phys. Rev. Mater. 7, 065404 (2023). https://doi.org/10.1103/PhysRevMaterials.7.065404
  3. S. Pramanik, N. Trejo, E. Mclntire, N. V. Hudson-Smith, B. Tuga, J. He, E. S. Aydil, C. L. Haynes, “Transformations and Environmental Impacts of Copper Zinc Tin Sulfide Nanoparticles and Thin Films,” ACS Applied Materials & Interfaces 15, 24978-24988 (2023). https://doi.org/10.1021/acsami.3c00374
  4. Y. Liu, I. J. Cleveland, M. N. Tran, and E. S. Aydil, “Stability of the Halide Double Perovskite Cs2AgInBr6,” J. Phys. Chem. Lett. 14, 3000-3006 (2023). https://doi.org/10.1021/acs.jpclett.3c00303
  5. Y. Liu, M. N. Tran, I. J. Cleveland and E. S. Aydil, “Physical vapor deposition of Yb-doped Cs2AgSbBr6 films,” J. Vac. Sci. Technol. B 41, 022206 (2023). https://doi.org/10.1116/6.0002475
  6. D. Mallapragada, Y. Dvorkin, M. Modestino, D. Esposito, W. Smith, B.-M Hodge, M. Harold, V. Donnelly, A. Nuz, C. Bloomquist, K. Baker, L. Grabow, Y. Yan, N. N. Rajput, R. Hartman, E. Biddinger, E. Aydil and A. Taylor, “Decarbonization of the Chemical Industry through Electrification: Barriers and Opportunities,” Joule 7, 23-41 (2023). https://doi.org/10.1016/j.joule.2022.12.008
  7. M.-W. Kim, Y.G. Yuan, S. Jeong, J. Chong, H. Mølnås, A. Alaei, I. J. Cleveland, N. Liu, Y. Ma, S. Strauf, E. S. Aydil, A. Sahu, D. M. Kalyon, and S. S. Lee, “Electrospun Tri-Cation Perovskite Nanofibers for Infrared Photodetection,” Adv. Funct. Mater. 32, 2207326 (2022). https://doi.org/10.1002/adfm.202207326
  8. M. N. Tran, I. J. Cleveland and E. S. Aydil, “Reactive Physical Vapor Deposition of Yb-Doped Lead-Free Double Perovskite Cs2AgBiBr6 with 95% Photoluminescence Quantum Yield,” ACS Appl. Electron. Mater. 4, 4588–4594 (2022). https://doi.org/10.1021/acsaelm.2c00788
  9. B. Das, J. Batley, K. Krycka, J. Borchers, P. Quarterman, C. Korostynski, M. Nguyen, I. Kamboj, E. S. Aydil and C. Leighton, “Chemically-induced Magnetic Dead Shells in Superparamagnetic Ni Nanoparticles Deduced from Polarized Small-Angle Neutron Scattering,” ACS Applied Materials & Interfaces 14, 33491-33504 (2022). https://doi.org/10.1021/acsami.2c05558
  10. M. N. Tran, I. J. Cleveland, J. R. Geniesse and E. S. Aydil, “High Photoluminescence Quantum Yield Near-Infrared Emission from a Lead-Free Ytterbium-Doped Double Perovskite,” Materials Horizons 2191-2197 (2022). https://dx.doi.org/10.1039/D2MH00483F
  11. T. Ono, S. Ganguly, Q. Tu, U. R. Kortshagen and Eray S. Aydil, “Plasma diagnostics and modeling of lithium-containing plasmas,” J. Phys. D: Appl. Phys. 55, 254001 (2022). https://doi.org/10.1088/1361-6463/ac5c1d
  12. A. Angulo, L. Yang, E. S. Aydil and M. A. Modestino, “Machine learning enhanced spectroscopic analysis: towards autonomous chemical mixture characterization for rapid process optimization,” Digital Discovery 1, 35-44 (2022). https://doi.org/10.1039/D1DD00027F
  13. M. R. Scimeca, M. Mattu, I. J. Paredes, M. N. Tran, S. J. Paul, E. S. Aydil and A. Sahu, “The Origin of Intraband Optical Transitions in Ag2Se Colloidal Quantum Dots,” J. Phys. Chem. C 125, 17556-17564 (2021). https://doi.org/10.1021/acs.jpcc.1c05371
  14. M. N. Tran, I. J. Cleveland, G. Pusterino and E. S. Aydil, “Efficient near-infrared Emission from lead-free ytterbium-doped cesium bismuth halide perovskites,” J. Mater. Chem. A 9, 13026 - 13035 (2021). https://doi.org/10.1039/D1TA02147H
  15. I. J. Cleveland, M. N. Tran, A. Dey, and E. S. Aydil, “Vapor Deposition of CsPbBr3 Thin Films by Evaporation of CsBr and PbBr2,” J. Vac. Sci. Technol. A 39, 043415 (2021). https://doi.org/10.1116/6.0000875
  16. B. Voigt, B. Das, D. M. Carr, D. Ray, M. Maiti, W. Moore, M. Manno, J. Walter, E. S. Aydil and C. Leighton, “Mitigation of the internal p-n junction in CoS2-contacted FeS2 single crystals: Accessing bulk semiconducting transport,” Phys. Rev. Mater. 5, 025405 (2021). https://doi.org/10.1103/PhysRevMaterials.5.025405
  17. M. N. Tran, I. J. Cleveland, and E. S. Aydil, “Physical Vapor Deposition of the Halide Perovskite CsBi2Br7,” J. Vac. Sci. Technol. A 39, 013409 (2021). https://doi.org/10.1116/6.0000604
  18. C. P. Clark, J. E. Mann, J. S. Bangsund, W.-J. Hsu, E. S. Aydil, R. J. Holmes, “Formation of Stable Metal Halide Perovskite/Perovskite Heterojunctions,” ACS Energy Lett. 5, 3443–3451 (2020). https://doi.org/10.1021/acsenergylett.0c01609
  19. X. Wu, B. L. Greenberg, Y. Zhang, J. T. Held,D. Huang,J. G. Barriocanal, K. A. Mkhoyan, E. S. Aydil, U. Kortshagen and X. Wang, “Thermal Transport in ZnO Nanocrystal Networks Synthesized by Nonthermal Plasma,” Phys. Rev. Materials 4, 086001 (2020). https://journals.aps.org/prmaterials/abstract/10.1103/PhysRevMaterials.4.086001
  20. M. N. Tran, I. J. Cleveland and E. S. Aydil, “Resolving the discrepancies in the reported optical absorption of low-dimensional non-toxic perovskites, Cs3Bi2Br9 and Cs3BiBr6,” J. Mater. Chem. C 8, 10456-10463 (2020). https://doi.org/10.1039/D0TC02783A
  21. J. T. Batley, M. Nguyen, I. Kamboj, C. Korostynski, E. S. Aydil and C. Leighton, “Quantitative Understanding of Superparamagnetic Blocking in Thoroughly Characterized Ni Nanoparticle Assemblies,” Chem. Mater. (2020). https://doi.org/10.1021/acs.chemmater.0c01758
  22. B. Voigt, W. Moore, M. Maiti, J. Walter, B. Das, M. Manno, C. Leighton, and E. S. Aydil, “Observation of an Internal p−n Junction in Pyrite FeS2 Single Crystals: Potential Origin of the Low Open Circuit Voltage in Pyrite Solar Cells,” ACS Materials Letters 2, 861-868 (2020). https://dx.doi.org/10.1021/acsmaterialslett.0c00207
  23. D. Ray, B. Voigt, M. Manno, C. Leighton, E. S. Aydil, and L. Gagliardi, “Sulfur Vacancy Clustering and Its Impact on Electronic Properties in Pyrite FeS2,” Chem. Mater. 32, 4820-4831 (2020). https://doi.org/10.1021/acs.chemmater.0c01669
  24. C. A. Beaudette,  J. T. Held,  B. L. Greenberg, P. H. Nguyen,  N. M. Concannon,  R. J. Holmes,  K. A. Mkhoyan,  Eray S. Aydil, and  U. R. Kortshagen, “Plasmonic nanocomposites of zinc oxide and titanium nitride,” J. Vac. Sci. Technol. A 38, 042404 (2020). https://avs.scitation.org/doi/10.1116/1.5142858
  25. C. Clark, B. Voigt, E. S. Aydil and R. Holmes, “Carrier-gas Assisted Vapor Deposition for Highly Tunable Morphology of Halide Perovskite Thin Films,” Sustainable Energy & Fuels 3, 2447-2455 (2019). https://dx.doi.org/10.1039/c9se00200f
  26. B. L. Greenberg, Z. L. Robinson, Y. Ayinob, J. T. Held, T. A. Peterson, K. A. Mkhoyan, V. S. Pribiagb, E. S. Aydil and U. R. Kortshagen, “Metal-Insulator Transition in a Semiconductor Nanocrystal Network,” Science Advances 5, eaaw1462 (2019). https://dx.doi.org/10.1126/sciadv.aaw1462
  27. H. Q. Pham, R. J. Holmes, E. S. Aydil and L. Gagliardi, “Lead-free double perovskites Cs2InCuCl6 and (CH3NH3)2InCuCl6: electronic, optical, and electrical properties,” Nanoscale 11, 11173-11182 (2019). https://dx.doi.org/10.1039/C9NR01645G
  28. B. Voigt, W. Moore, M. Manno, J. Walter, J. D. Jeremiason, E. S. Aydil and C. Leighton, “Transport Evidence for Sulfur Vacancies as the Origin of Unintentional n-Type Doping in Pyrite FeS2,” ACS Applied Materials & Interfaces 11, 15552–15563 (2019). https://dx.doi.org/10.1021/acsami.9b01335
  29. J. D. Dwyer, E. Juarez Diaz, T. E. Webber, A. Katzenberg, M. A. Modestino and E. S. Aydil, “Quantum Confinement in Few Layer SnS Nanosheets,” Nanotechnology 30, 245705 (2019). https://dx.doi.org/10.1088/1361-6528/ab0e3e
  30. B. Benton, B. Greenberg, E. S. Aydil, U. Kortshagen and S. Campbell, “Variable Range Hopping Conduction in ZnO Nanocrystal Thin Films,” Nanotechnology 29, 415202 (2018). https://doi.org/10.1088/1361-6528/aad6ce
  31. D. Ray, C. Clark, H. Q. Pham, J. Borycz, R. J. Holmes, E. S. Aydil, and L. Gagliardi, “Computational Study of Structural and Electronic Properties of Lead-Free CsMI3 Perovskites (M = Ge, Sn, Pb, Mg, Ca, Sr, and Ba),” J. Phys. Chem. C 122, 7838-7848 (2018). https://pubs.acs.org/doi/10.1021/acs.jpcc.8b00226
  32. A. H. Pinto, S. W. Shin, A. Sharma, R. L. Penn and  E. S. Aydil, “Synthesis of Cu2(Zn1-xCox)SnS4 Nanocrystals and Formation of Polycrystalline Thin Films from Their Aqueous Dispersions,” J. Mater. Chem. A 6, 999-1008 (2018). https://dx.doi.org/10.1039/C7TA06295H
  33. J. Walter, X. Zhang, B. Voigt, R. Hool, M. Manno, F. Mork, E. S. Aydil and C. Leighton, “Surface Conduction in n-type Pyrite FeS2 Single Crystals,” Phys. Rev. Materials 1, 065403 (2017). https://doi.org/10.1103/PhysRevMaterials.1.065403
  34. A. H. Pinto, S. W. Shin, E. Isaac, T. R. Knutson, E. S. Aydil and R. Lee Penn, “Controlling Cu2ZnSnS4 (CZTS) Phase in Microwave Solvothermal Synthesis,” J. Mater. Chem. A 5, 23179-23189 (2017). https://dx.doi.org/10.1039/C7TA06086F
  35. W. N. Wenger, F. S. Bates, and E. S. Aydil, “Functionalization of Cadmium Selenide Quantum Dots with Poly(ethylene glycol): Ligand Exchange, Surface Coverage, and Dispersion Stability,” Langmuir 33, 8239-8245 (2017). https://dx.doi.org/10.1021/acs.langmuir.7b01924
  36. B. L. Greenberg, Z. L. Robinson, K. V. Reich, C. Gorynski, B. N. Voigt, L. F. Francis, B. I. Shklovskii, E. S. Aydil, and U. R. Kortshagen, “ZnO Nanocrystal Networks Near the Insulator–Metal Transition: Tuning Contact Radius and Electron Density with Intense Pulsed Light,” Nano Lett. 17, 4634-4642 (2017). https://dx.doi.org/10.1021/acs.nanolett.7b01078
  37. X. Zhang, M. Li, J. Walter, L. O’Brien, M. Manno, B. Voigt, F. Mork, S. Baryshev, J. Kakalios, E. S. Aydil and C. Leighton, “Potential Resolution to the “Doping Puzzle” in Iron Pyrite: Carrier Type Determination by Hall Effect and Thermopower,” Phys. Rev. Materials 1, 015402  (2017). https://doi.org/10.1103/PhysRevMaterials.1.015402
  38. B. A. Williams, N. D. Trejo, A. Wu, C. S. Holgate, L. F. Francis, and E. S. Aydil, “Copper Zinc Tin Sulfide Thin Films viaAnnealing of Ultrasonic Spray Deposited Nanocrystal Coatings” ACS Applied Materials & Interfaces 9, 1886-18871 (2017). https://pubs.acs.org/doi/10.1021/acsami.7b04414
  39. B. A. Williams, M. A. Smeaton, N. D. Trejo, L. F. Francis, and E. S. Aydil, "Effect of Nanocrystal Size and Carbon on Grain Growth During Annealing of Copper Zinc Tin Sulfide Nanocrystal Coatings,” Chem. Mater. 29, 1676-1683 (2017). https://doi.org/10.1021/acs.chemmater.6b05058
  40. B. A. Williams, M. A. Smeaton, C. S. Holgate, N. D. Trejo, L. F. Francis, and E. S. Aydil, “Intense Pulsed Light Annealing of Copper Zinc Tin Sulfide Nanocrystal Coatings,” J. Vac. Sci. Technol. A 34, 151204 (2016). https://dx.doi.org/10.1116/1.4961661
  41. U. R. Kortshagen, R. M. Sankaran, R. N. Pereira, S. L. Girshick, J. J. Wu and E. S. Aydil, “Nonthermal Plasma Synthesis of Nanocrystals: Fundamental Principles, Materials, and Applications,” Chem. Rev. 116, 11061-11127 (2016). https://pubs.acs.org/doi/abs/10.1021/acs.chemrev.6b00039
  42. A. H. Pinto, S. W. Shin, E. S. Aydil and R. L. Penn, “Selective Removal of Cu2−x (S,Se) Phases from Cu2ZnSn(S,Se)4 Thin Films,” Green Chemistry 18, 5814-5821 (2016). https://dx.doi.org/10.1039/C6GC01287F
  43. N. Bilik, B. L. Greenberg, J. Yang, E. S. Aydil, and U. R. Kortshagen, “Atmospheric-Pressure Glow Plasma Synthesis of Plasmonic and Photoluminescent Zinc Oxide Nanocrystals,” J. Appl. Phys. 119, 243302 (2016). https://aip.scitation.org/doi/10.1063/1.4954323
  44. B. D. Chernomordik, P. M. Ketkar, A. K. Hunter, A. E. Béland, D. D. Deng, and E. S. Aydil, “Microstructure Evolution During Selenization of Cu2ZnSnS4 Colloidal Nanocrystal Coatings,” Chem. Mater. 28, 1266-1276 (2016). https://pubs.acs.org/doi/abs/10.1021/acs.chemmater.5b02462
  45. Y. Qin, N. Bilik, U. R. Kortshagen and E. S. Aydil, “Laser light scattering from silicon particles generated in an argon diluted silane plasma,” J. Phys. D 49, 085203 (2016). https://dx.doi.org/10.1088/0022-3727/49/8/085203
  46. B. L. Greenberg, S. Ganguly, J. T. Held, N. J. Kramer, K. A. Mkhoyan, E. S. Aydil and U. R. Kortshagen, “Nonequilibrium-Plasma-Synthesized ZnO Nanocrystals with Plasmon Resonance Tunable via Al Doping and Quantum Confinement,” Nano Lett. 15, 8162-8169 (2015). https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.5b03600
  47. X. Zhang, T. Scott, T. Socha, D. Nielsen, M. Manno, M. Johnson, Y. Yan, Y. Losovyj, P. Dowben, E. S. Aydil, and C. Leighton, “Phase Stability and Stoichiometry in Thin Film Iron Pyrite: Impact on Electronic Transport Properties,” ACS Appl. Mater. Interfaces 7, 14130–14139 (2015). https://pubs.acs.org/doi/10.1021/acsami.5b03422
  48. E. Thimsen, U. R. Kortshagen and E. S. Aydil, “Nonthermal Plasma Synthesis of Metal Sulfide Nanocrystals from Metalorganic Vapor and Elemental Sulfur,”J. Phys. D 48, 31404 (2015). https://doi.org/10.1088/0022-3727/48/31/314004
  49. B. A. Williams, A. Mahajan, M. A. Smeaton, C. S. Holgate, E. S. Aydil, L. F. Francis, “Formation of Copper Zinc Tin Sulfide Thin Films from Colloidal Nanocrystal Dispersions via Aerosol-Jet Printing and Compaction,” ACS Appl. Mater. Interfaces7, 11526–11535 (2015). https://pubs.acs.org/doi/abs/10.1021/acsami.5b02484
  50. M. Johnson, C. Wrasman, X. Zhang, M. Manno, C. Leighton and E. S. Aydil, “Self-Regulation of Cu/Sn Ratio in the Synthesis of Cu2ZnSnS4Films,” Chem. Mater. 27, 2507-2514(2015). https://pubs.acs.org/doi/abs/10.1021/acs.chemmater.5b00108
  51. N. Bilik, R. Anthony, B. Merritt, E. S. Aydil and U. Kortshagen, "Langmuir Probe Measurements of Electron Energy Probability Functions in Dusty Plasmas,"J. Phys. D 48, 105204 (2015). https://doi.org/10.1088/0022-3727/48/10/105204
  52. N. J. Kramer, E. S. Aydil and U. R. Kortshagen, “Requirements for Plasma Synthesis of Nanocrystals at Atmospheric Pressures,” J. Phys. D 48, 035205 (2015). https://doi.org/10.1088/0022-3727/48/3/035205
  53. S. H. Song, E. S. Aydil and S. Campbell, "Metal Oxide Broken Gap Tunnel Junction for Copper Indium Gallium Diselenide Tandem Solar Cells," Sol. Energy Mater. Sol. Cells 133, 133-142 (2015). https://doi.org/10.1016/j.solmat.2014.10.046
  54. F. Johnson, S. H. Song, J. Abrahamson, R. Liptak, E. S. Aydil and S. Campbell, "Sputtered Metal Oxide Broken Gap Junctions for Solar Cells," Sol. Energy Mater. Sol. Cells 132, 515-522 (2015). https://doi.org/10.1016/j.solmat.2014.09.042
  55. E. Thimsen, M. Johnson, X. Zhang, A. J. Wagner, K. A. Mkhoyan, U. Kortshagen and E. S. Aydil, "High Electron Mobility Thin Films Formed Via Supersonic Impact Deposition of Nanocrystals Synthesized in Nonthermal Plasmas," Nat. Comm. 5, 5822 (2014). https://dx.doi.org/10.1038/ncomms6822
  56. M. Johnson, M. Manno, X. Zhang, C. Leighton, and E. S. Aydil, “Substrate and Temperature Dependence of the formation of the Earth Abundant Solar Absorber Cu2ZnSnS4by ex situSulfidation of Co-sputtered Cu-Zn-Sn Films,” J. Vac. Sci. Technol. A 32, 061203 (2014). https://avs.scitation.org/doi/10.1116/1.4901091
  57. S. Karthikeyan, M. Sibakotil, R. Liptakl, S. H. Song, J. Abrahamson,E. S. Aydil and S. A. Campbell, “Challenges in Deposition of Wide Band Gap Copper Indium Aluminum Gallium Selenide (CIAGS) Thin Films for Tandem Solar Cells,” 40thIEEE Photovoltaics Specialist Conference (PVSC) 2014, 1632-11634 (2014). https://ieeexplore.ieee.org/document/6925232
  58. E. Thimsen, U. R. Kortshagen and E. S. Aydil, “Plasma Synthesis of Stoichiometric Cu2S nanocrystals Stabilized by Oleylamine,” Chem. Comm. 50, 8346-8349 (2014). https://dx.doi.org/10.1039/C4CC00998C
  59. B. D. Chernomordik, A. E. Béland, N. Trejo, A. Gunawan, D. D. Deng, K. A. Mkhoyan and E. S. Aydil “Rapid Facile Synthesis of Cu2ZnSnS4 Nanocrystals,” J. Mater. Chem. A 2, 10389−10395 (2014). https://dx.doi.org/10.1039/C4TA01658K
  60. B. D. Chernomordik, A. E. Béland, D. D. Deng, L. F. Francis, and E. S. Aydil, “Microstructure Evolution and Crystal Growth In Cu2ZnSnS4 Thin Films Formed By Annealing Colloidal Nanocrystal Coatings,” Chem. Mater. 26, 3191−3201 (2014). https://pubs.acs.org/doi/abs/10.1021/cm500791a
  61. A. A. Gunawan, B. D. Chernomordik, D. S. Plemmons, D. D. Deng, E. S. Aydil, and K. A. Mkhoyan, “Plasmonic Interactions through Chemical Bonds of Surface Ligands on PbSe Nanocrystals,” Chem. Mater. 26, 3328-3333 (2014). https://pubs.acs.org/doi/10.1021/cm501254m
  62. T. R. Knutson,P. J. Hanson, E. S. Aydiland R. L. Penn, “Synthesis of Cu2ZnSnS4 Thin Films Directly onto Conductive Substrates via Selective Thermolysis using Microwave Energy” Chem. Comm. 50, 5902-5904 (2014). https://dx.doi.org/10.1039/C3CC49207A
  63. M.Johnson, S. V. Baryshev, E. Thimsen, M. Manno, X. Zhang, I. V. Veryovkin, C. Leighton and E. S. Aydil, “Alkali-metal-enhanced grain growth in Cu2ZnSnS4thin films,” Energy Environ. Sci. 7, 1931-1938 (2014). https://dx.doi.org/10.1039/C3EE44130J
  64. B. Liu, L. Liu, X-F. Lang, H.-Y. Wang, X. W. Lou and E. S. Aydil, “Doping High-Surface-Area Mesoporous TiO2 Microspheres with Carbonate for Visible Light Hydrogen Production,” Energy Environ. Sci. 7, 2592-2597 (2014). https://dx.doi.org/10.1039/C4EE00472H
  65. N. J. Kramer, R. J. Anthony, M. Mamunuru, E. S. Aydil and U. R. Kortshagen, “Plasma Induced Crystallization of Silicon Nanoparticles,” J. Phys. D 47, 075202 (2014). https://doi.org/10.1088/0022-3727/47/7/075202
  66. B. S. Tosun, J. T. Abrahamson, C. Cheng, S. A. Campbell and E. S. Aydil, “Efficient Continuous Flow Chemical Bath Deposition of CdS Films as Buffer Layers for Chalcogenide-Based Solar Cells,” 39th IEEE Photovoltaics Specialist Conference (PVSC) 2013, 1192-1194 (2013). https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6744353
  67. T. J. Pundsack, B. D. Chernomordik, A. E. Béland, E. S. Aydil, and D. A. Blank, “Excited State Dynamics in CZTS Nanocrystals,” J. Phys. Chem. Lett. 4, 2711-2714 (2013). https://pubs.acs.org/doi/10.1021/jz4013245
  68. B. S. Tosun, B. D. Chernomordik, A. A. Gunawan, B. Williams, K. A. Mkhoyan,L. F. Francis and E. S. Aydil, “Cu2ZnSnS4 Nanocrystal Dispersions in Polar Liquids,” Chem. Comm. 49, 3549-3551 (2013). 10.1039/C3CC40388B
  69. X. Zhang, M. Manno, A. Baruth, M. Johnson, E. S. Aydil, and C. Leighton, “Crossover From NanoscopicIntergranular Hopping to Conventional Charge Transport in Pyrite Thin Films,” ACS Nano 7, 2781-2789 (2013). https://pubs.acs.org/doi/10.1021/nn4003264
  70. N. Rastgar, D. J. Rowe, R. J. Anthony, B. A. Merritt, U. R. Kortshagen and E. S. Aydil, “Effects of Water Adsorption and Surface Oxidation on the Electrical Conductivity of Silicon Nanocrystal Films,” J. Phys. Chem. C117, 4211-4218 (2013). pubs.acs.org/doi/abs/10.1021/jp308279m
  71. D. J. Norris and E. S. Aydil, “Getting Moore from Solar Cells,” Science 338, 625-626 (2012). https://dx.doi.org/10.1126/science.1230283
  72. A. Baruth, M. Manno, D. Narasimhan, A. Shankar, X. Zhang, M. Johnson, E. S. Aydil, and C. Leighton, “Reactive Sputter Deposition of Pyrite Structure Transition Metal Disulfide Thin Films: Microstructure, Transport and Magnetism,” J. Appl. Phys.112, 054328 (2012). https://doi.org/10.1063/1.4751358
  73. B. Liu, A. Khare and E. S. Aydil, “Synthesis of Single-Crystalline Anatase Nanorods and Nanoflakes on Transparent Conducting Substrates,” Chem. Commun. 45, 8565-8567 (2012). https://dx.doi.org/10.1039/c2cc33750a\
  74. B. S. Tosun, C. Pettit, S. A. Campbell and E. S. Aydil, “Structure and Composition of ZnxCd1-xS Films Synthesized through Chemical Bath Deposition,” ACS Appl. Mater. Interfaces 4, 3676-3684 (2012). pubs.acs.org/doi/abs/10.1021/am300771k
  75. A. Khare, B. Himmetoglu, M. Cococcioni and E. S. Aydil, “First Principles Calculation of the Electronic Properties and Lattice Dynamics of Cu2ZnSn(S1−xSex)4,” J. Appl. Phys.111, 123704 (2012). https://aip.scitation.org/doi/10.1063/1.4728232
  76. A. Khare, B. Himmetoglu, M. Johnson, D. J. Norris, M. Cococcioni and E. S. Aydil, “Calculation of the Lattice Dynamics and Raman Spectra of Copper Zinc Tin Chalcogenides and Comparison to Experiments,” J. Appl. Phys.111, 083707 (2012). https://doi.org/10.1063/1.4704191
  77. B. S. Tosun, R. K. Feist, S. A. Campbell and E. S. Aydil, “Tin Dioxide as an Alternative Window Layer for Improving the Damp-Heat Stability of Copper indium Gallium Diselenide Solar Cells,” J. Vac. Sci. Technol. A30, 04D101 (2012). https://doi.org/10.1116/1.3692225
  78. B. S. Tosun, R. K. Feist, A. Gunawan, K. A. Mkhoyan, S. A. Campbell and E. S. Aydil, “Improving the Damp-Heat Stability of Copper Indium Gallium Diselenide Solar Cells with a Semicrystalline Tin Dioxide Overlayer,” Solar Energy Materials and Solar Cells 101, 270-276 (2012). https://doi.org/10.1016/j.solmat.2012.02.017
  79. B. S. Tosun, R. K. Feist, A. Gunawan, K. A. Mkhoyan, S. A. Campbell and E. S. Aydil, “Sputter Deposition of Semicrystalline Tin Dioxide Films,” Thin Solid Films 520, 2554–2561 (2012). https://doi.org/10.1016/j.tsf.2011.10.169
  80. B. Liu, A. Khare and E. S. Aydil, “TiO2-B/Anatase Core-Shell Heterojunction Nanowires for Photocatalysis,” ACS Appl. Mater. Interfaces 3, 4444-4450 (2011). https://pubs.acs.org/doi/abs/10.1021/am201123u
  81. A. Khare, A. W. Wills, L. M. Ammerman, D. J. Norris and E. S. Aydil, “Size Control and Quantum Confinement in Cu2ZnSnS4Nanocrystals,” Chem. Commun. 47, 11721-11723 (2011). https://dx.doi.org/10.1039/C1CC14687D
  82. B. Liu and E. S. Aydil, “Anatase TiO2 Films with Reactive {001} Facets on Transparent Conductive Substrate,” Chem. Commun. 47, 9507-9509 (2011). https://dx.doi.org/10.1039/C1CC12365C
  83. B. Liu and E. S. Aydil, “Layered Mesoporous Nanostructures for Enhanced Light Harvesting in Dye-Sensitized Solar Cells,” Journal of Renewable and Sustainable Energy 3, 043106 (2011). https://aip.scitation.org/doi/10.1063/1.3615641
  84. A.-J Cheng, M. Manno, A. Khare, C. Leighton, S. Campbell and E. S. Aydil, “Imaging and Phase Identification of Cu2ZnSnS4 Thin Films Using Confocal Raman Spectroscopy,” J. Vac. Sci. Technol. A 29, 051203 (2011).https://doi.org/10.1116/1.3625249
  85. M. J. Behr, K. A. Mkhoyan, and E. S. Aydil, “Carbon Diffusion from Methane into Walls of Carbon Nanotube through Structurally and Compositionally Modified Iron Catalyst,” Microscopy and Microanalysis 17, 582-586 (2011). https://doi.org/10.1017/S1431927611000286
  86. S. H. Jeong, S. H. Song, K. Nagaich, S. A. Campbell, E. S. Aydil, “An Analysis of Temperature Dependent Current–Voltage Characteristics of Cu2O–ZnO Heterojunction Solar Cells,” Thin Solid Films 519, 6613-6619 (2011). https://doi.org/10.1016/j.tsf.2011.04.241
  87. C. A. Wolden, J. Kurtin, J. B. Baxter, I. Repins, S. E. Shaheen, J. T. Torvik, A. A. Rockett, V. M. Fthenakis and E. S. Aydil, “Photovoltaic Manufacturing: Present Status, Future Prospects and Research Needs,” J. Vac. Sci. Technol. A 29, 030801 (2011). https://doi.org/10.1116/1.3569757
  88. S. H. Song, K. Nagaich, E. S. Aydil, R. Feist, R. Haley and S. A. Campbell, “Structure Optimization for a High Efficiency CIGS Solar Cell,” Proceedings of the 35th Photovoltaics Specialist Conference (PVSC) 2010 35th IEEE, 002488 (2010). https://ieeexplore.ieee.org/document/5614724
  89. A.-J. Cheng, M. Manno, R. Frakie, R. Hoffman, C. Leighton, E. S. Aydil, S. A. Campbell, “Sulfurization studies of the potential thin film solar absorber Cu2ZnSnS4,”Photovoltaics Specialist Conference (PVSC) 2010 35th IEEE, 001906 (2010). https://ieeexplore.ieee.org/document/5616339/
  90. N. Araki, E. S. Aydil and K. Dorfman, “Collision of a Long DNA molecule with anIsolated Nanowire,” Electrophoresis 31, 3675-3680 (2010). https://doi.org/10.1002/elps.201000331
  91. M. J. Behr, E. A. Gaulding, A. K. Mkhoyan and E. S. Aydil, “Hydrogen Etching and Cutting of Multiwall Carbon Nanotubes,” J. Vac. Sci. Technol. B 28 1187-1194 (2010). https://avs.scitation.org/doi/10.1116/1.3498737
  92. S. Jeong and E. S. Aydil, “Structural and Electrical Properties of Cu2O Thin Films Deposited on ZnO by Metal Organic Chemical Vapor Deposition,” J. Vac. Sci. Technol. A 28, 1338-1343 (2010). https://doi.org/10.1116/1.3491036
  93. M. J. Behr, A. K. Mkhoyan and E. S. Aydil, “Orientation and Morphological Evolution of Catalyst Nanoparticles During Carbon Nanotube Growth,” ACS Nano 4, 5087-5094 (2010). https://dx.doi.org/10.1021/nn100944n
  94. M. J. Behr, E. A. Gaulding, A. K. Mkhoyan and E. S. Aydil, “Effect of Hydrogen on Catalyst Nanoparticles in Carbon Nanotube Growth,” J. Appl. Phys. 108, 053303 (2010). https://aip.scitation.org/doi/10.1063/1.3467971
  95. M. J. Behr, A. K. Mkhoyan and E. S. Aydil, “Catalyst Rotation, Twisting, and Bending During Multiwall Carbon Nanotube Growth,” Carbon 48, 3840-3845 (2010). https://doi.org/10.1016/j.carbon.2010.06.049
  96. B. Liu, D. Deng, J. Y. Lee and E. S. Aydil, “Oriented Single-Crystalline TiO2 Nanowires on Titanium Foil for Lithium Ion Batteries,” J. Mater. Res. 25, 1588-1594 (2010).  https://doi.org/10.1557/JMR.2010.0204
  97. W. A. Tisdale, K. J. Williams, B. C. Timp, D. J. Norris, E. S. Aydil and X.-Y. Zhu, “Hot Electron Transfer from Semiconductor Nanocrystals,” Science 328, 1543-1547 (2010). https://dx.doi.org/10.1126/science.1185509
  98. K. S. Leschkies, M. S. Kang, E. S. Aydil and D. J. Norris, “Influence of Atmospheric Gases on the Electrical Properties of PbSe Quantum-Dot Films,” J. Phys. Chem. C 114, 9988-9996 (2010). https://pubs.acs.org/doi/10.1021/jp101695s
  99. K. S. Leschkies, A. G. Jacobs, D. J. Norris, and E. S. Aydil, “Nanowire Quantum-Dot Solar Cells and the Influence of Nanowire Length on the Charge Collection Efficiency,” Appl. Phys. Lett. 95, 193103 (2009). https://doi.org/10.1063/1.3258490
  100. K. S. Leschkies, T. J. Beatty, M. S. Kang, D. J. Norris, and E. S. Aydil, “Solar Cells Based on Junctions Between Colloidal PbSe Nanocrystals and Thin ZnO Films,” ACS Nano 11, 3638-3648 (2009). https://pubs.acs.org/doi/10.1021/nn901139d
  101. A. R. Muniz, T. Singh, E. S. Aydil, and D. Maroudas, “Analysis of Diamond Nanocrystal Formation from Multi-walled Carbon Nanotubes,” Phys. Rev. B 80, 144105 (2009). https://dx.doi.org/10.1103/PhysRevB.80.144105
  102. E. Enache-Pommer, B. Liu and E. S. Aydil, “Electron Transport and Recombination in Dye-Sensitized Solar Cells Made from Single Crystal Rutile TiO2 Nanowires,” Phys. Chem. Chem. Phys.11, 9648-9652 (2009). https://dx.doi.org/10.1039/B915345D
  103. S. Jeong and E. S. Aydil, “Heteroepitaxial Growth of Cu2O Thin Film on ZnO by Metal Organic Chemical Vapor Deposition,” J. Cryst. Growth 311, 4188-4192 (2009). https://doi.org/10.1016/j.jcrysgro.2009.07.020
  104. K. J. Williams, W. A. Tisdale, K. S. Leschkies, G. Haugstad, D. J. Norris, E. S. Aydil and X.-Y. Zhu, “Strong Electronic Coupling in Two-Dimensional Assemblies of Colloidal PbSe Quantum Dots,” ACS Nano 3, 1532-1538 (2009). https://pubs.acs.org/doi/10.1021/nn9001819
  105. T. Singh, M. J. Behr, E. S. Aydil and D. Maroudas, “First-Principles Theoretical Analysis of Pure and Hydrogenated Crystalline Carbon Phases and Nanostructures,” Chem. Phys. Lett. 474, 168-174 (2009). https://doi.org/10.1016/j.cplett.2009.04.048
  106. J. E. Boercker, J. B. Schmidt and E. S. Aydil, “Transport Limited Growth of Zinc Oxide Nanowires,” Cryst. Growth Des. 9, 2783-2789 (2009). https://pubs.acs.org/doi/10.1021/cg900021u
  107. B. Liu and E. S. Aydil, "Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells," J. Amer. Chem. Soc. 131, 3985-3990 (2009). https://pubs.acs.org/doi/10.1021/ja8078972
  108. J. B. Baxter and E. S. Aydil, “Metalorganic Chemical Vapor Deposition of ZnO Nanowires from Zinc Acetylacetonate and Oxygen,” J. Electrochem. Soc.156, H52-H58 (2009). https://dx.doi.org/10.1149/1.3006390
  109. B. Liu, J. E. Boercker, and E. S. Aydil, “Oriented Single-Crystalline Anatase TiO2 Nanowires,” Nanotechnology 19, 505604 (2008). https://dx.doi.org/10.1039/C1EE02766B
  110. W. A. Tisdale, M. Muntwiler, D. J. Norris, E. S. Aydil and X.-Y Zhu, “Electron Dynamics at the  ZnO Surface,” J. Phys. Chem. C 112, 14682-14692 (2008). https://pubs.acs.org/doi/abs/10.1021/jp802455p
  111. B. Carlson, K. S. Leschkies, E. S. Aydil and X.-Y Zhu, “Valence Band Alignment at CdSe Quantum Dot and ZnO  Interfaces,” J. Phys. Chem. C 112, 8419-8423 (2008). https://pubs.acs.org/doi/10.1021/jp7113434
  112. J. E. Boercker, E. Enache-Pommer, and E. S. Aydil, “Growth Mechanism of TiO2 Nanowires for Dye-Sensitized Solar Cells,” Nanotechnology 19, 095604 (2008). https://doi.org/10.1088/0957-4484/19/9/095604
  113. E. S. Aydil, “Nanomaterials for Solar Cells,” Nanotechnology Law & Business 4, 275-291 (2007). https://heinonline.org/HOL/Page?handle=hein.journals/nantechlb4&div=41&g_sent=1&casa_token=&collection=journals
  114. R. C. Mani, I. Pavel, and E. S. Aydil, "Deposition of Nanocrystalline Silicon Films at Room Temperature," J. Appl. Phys. 102, 043305 (2007). https://aip.scitation.org/doi/pdf/10.1063/1.2770824
  115. E. Enache-Pommer, J. E. Boercker and E. S. Aydil, “Electron Transport and Recombination in Polycrystalline TiO2 Nanowire Dye-Sensitized Solar Cells,” Appl. Phys. Lett. 91, 123116 (2007). https://aip.scitation.org/doi/10.1063/1.2783477
  116. K. S. LeschkiesR. Divakar,J. Basu,E. Enache-Pommer,J. E. Boercker,C. B. Carter,U. R. Kortshagen, D.  J. Norris,and E. S. Aydil, “Photosensitization of ZnO Nanowires with CdSe Quantum Dots for Photovoltaic Devices,” Nano Lett. 7, 1793-1798 (2007). https://pubs.acs.org/doi/10.1021/nl070430o
  117. J. R. Belen, S. Gomez, M. Kiehlbauch and E. S. Aydil, “In Situ Measurement of the Ion Incidence Angle Dependence of the Ion-Enhanced Etching Yield in Plasma Reactors,” J. Vac. Sci. Technol. A 24, 2176-2186 (2006). https://avs.scitation.org/doi/pdf/10.1116/1.2362725
  118. M. S. Valipa, S. Sriraman, E. S. Aydil, and D. Maroudas, “Hydrogen-Induced Crystallization of Amorphous Silicon Thin Films. II. Mechanisms and Energetics of Hydrogen Insertion into Si-Si Bonds,” J. Appl. Phys. 100, 053515 (2006). https://dx.doi.org/10.1063/1.2229426
  119. S. Sriraman, M. S. Valipa, E. S. Aydil, and D. Maroudas, “Hydrogen-Induced Crystallization of Amorphous Silicon Thin Films. I. Simulation and Analysis of Film Post Growth Treatment with H2 Plasmas,” J. Appl. Phys. 100, 053514 (2006). https://aip.scitation.org/doi/10.1063/1.2229426
  120. J. B. Baxter, A. M. Walker, K. van Ommering, and E. S. Aydil, “Synthesis and Characterization of ZnO Nanowires and their Integration into Dye Sensitized Solar Cells,” Nanotechnology 17, S304 (2006). https://doi.org/10.1088/0957-4484/17/11/S13
  121. J. R. Belen, S. Gomez, M. Kiehlbauch and E. S. Aydil, “Feature-scale Model of Si etching in SF6/O2/HBr Plasma and Comparison with Experiments,” J. Vac. Sci. Technol. A 24, 350 (2006). https://avs.scitation.org/doi/10.1116/1.2173268
  122. J. B. Baxter and E. S. Aydil, “Dye Sensitized Solar Cells Based on Semiconductor Morphologies with ZnO Nanowires,” Sol. Energ. Mat. Sol. C. 90, 607 (2006). https://doi.org/10.1016/j.solmat.2005.05.010
  123. M. Valipa, T. Bakos, E. S. Aydil and D. Maroudas, “The Role of SiH3 Diffusion in Determining the Surface Smoothness of Plasma-Deposited Amorphous Silicon Thin Films: An atomic scale analysis,” Materials Research Society Symposium Proceedings 862, A3.2 (2005). https://doi.org/10.1557/PROC-862-A3.2
  124. M. S. Valipa, S. Sriraman, E. S. Aydil, and D. Maroudas, “Atomic-Scale Analysis of Fundamental Mechanisms of Surface Valley Filling During Plasma Deposition of Amorphous Silicon Thin Films,” Surf. Sci. 574, 123-143 (2005). https://dx.doi.org/10.1016/j.susc.2004.10.039
  125. S. Agarwal, M. S. Valipa, B. Hoex, M. C. M. van de Sanden, D. Maroudas and E. S. Aydil, “Interaction of SiH3 Radicals with an Amorphous Deuterated (Hydrogenated) Silicon Surface,” Surf. Sci. 598, 35-44 (2005). https://doi.org/10.1016/j.susc.2005.09.026
  126. M. S. Valipa, T. Bakos, E. S. Aydil, and D. Maroudas, “Surface Smoothening Mechanism of Amorphous Silicon Thin Films,” Phys. Rev. Lett. 95, 216102 (2005). https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.95.216102
  127. S. Gomez, J. R. Belen, M. Kiehlbauch, and E. S. Aydil, “Etching of High Aspect Ratio Features in Si using SF6/O2/HBr and SF6/O2/Cl2 Plasma,” J. Vac. Sci. Technol. A 23, 1592 (2005). https://avs.scitation.org/doi/10.1116/1.2049303
  128. T. Bakos, M. Valipa, E. S. Aydil, and D. Maroudas, “Temperature Dependence of Precursor-Surface Interactions in Plasma Deposition of Silicon Thin Films,” Chem. Phys. Lett. 414, 61-65 (2005). https://doi.org/10.1016/j.cplett.2005.07.107
  129. J. R. Belen, S. Gomez, D. Cooperberg, M. Kiehlbauch and E. S. Aydil, “Feature-Scale Model of Si Etching in SF6/O2 Plasma and Comparison with Experiments,” J. Vac. Sci. Technol. A 23, 1430-1439 (2005). https://dx.doi.org/10.1116/1.2013317
  130. M. Valipa, E. S. Aydil, and D. Maroudas, “Visualizing the Evolution of Surface Morphology and Surface Bond Strain During Plasma Deposition of Amorphous Silicon Thin Films,” IEEE T. Plasma Sci. 33, 228-229 (2005). https://ieeexplore.ieee.org/document/1420410
  131. J. B. Baxter and E. S. Aydil, "Nanowire-based dye-sensitized solar cells," Appl. Phys. Lett. 86, 053114 (2005). https://aip.scitation.org/doi/10.1063/1.1861510
  132. C. A. Wolden, T. M. Barnes, J. B. Baxter, and E. S. Aydil, “Infrared detection of Hydrogen-Generated Free Carriers in Polycrystalline ZnO Thin Films,” J. Appl. Phys. 97, 043522 (2005). https://aip.scitation.org/doi/10.1063/1.1851599
  133. J. B. Baxter and E. S. Aydil, “Epitaxial Growth of ZnO Nanowires on a- and c-plane Sapphire,” Journal of Crystal Growth 274, 407 (2005). https://doi.org/10.1016/j.jcrysgro.2004.10.014
  134. M. S. Valipa, E. S. Aydil, and D. Maroudas, “Atomistic Calculation of the SiH3Surface Reactivity During Plasma Deposition of Amorphous Silicon Thin Films,” Surf. Sci. Lett. 572, L339-L347(2005). https://doi.org/10.1016/j.susc.2004.08.029
  135. R. J. Belen, S. Gomez, M. Kiehlbauch, D. Cooperberg and E.  S. Aydil, “Feature-Scale Model of Si Etching in SF6 Plasma and Comparison with Experiments,” J. Vac. Sci. Technol. A 23, 99 (2005). https://avs.scitation.org/doi/10.1116/1.1830495
  136. E. S. Aydil, S. Agarwal, M. Valipa, S. Sriraman, and D. Maroudas, “Surface Processes during Growth of Hydrogenated Amorphous Silicon,” Materials Research Society Symposium Proceedings 808, A 5.5 (2004).  https://doi.org/10.1557/PROC-808-A5.5
  137. S. Gomez, J. R. Belen, M. Kiehlbauch, and E. S. Aydil, “Etching of High Aspect Ratio Structures in Si Using SF6/O2 Plasma,” J. Vac. Sci. Technol. A 22, 606(2004). https://avs.scitation.org/doi/10.1116/1.1710493
  138. S. Agarwal, G. W. W. Quax, M. C. M. van de Sanden, D. Maroudas and E. S.  Aydil, “Measurement of Absolute Radical Densities in a Plasma Using Modulated Beam Line-of-Sight Threshold Ionization Mass Spectrometry,” J. Vac. Sci. Technol. A 22, 71-81 (2004). https://doi.org/10.1116/1.1627767
  139. S. Sriraman, E. S. Aydil, and D. Maroudas, “Growth and Characterization of a-Si:H Thin Films from SiH2 Radical Precursor: An Atomic Scale Analysis,” J. Appl. Phys. 95, 1792-1805 (2004). https://doi.org/10.1063/1.1636512
  140. S. Agarwal, B. Hoex, M. C. M. van de Sanden, D. Maroudas, and E. S. Aydil, “Hydrogen in Si-Si Bond-Center and Platelet-Like Configurations in Amorphous Hydrogenated Silicon,” J. Vac. Sci. Technol. 22,  2719-2726 (2004). https://doi.org/10.1116/1.1824191
  141. A. Takano, T. Wada, S. Fujikake, T. Yoshida, T. Ohto, and E. S. Aydil, “Reaction Control in Amorphous Silicon Film Deposition by Hydrogen Chloride,” Materials Research Society Symposium Proceedings, A.15.2, 521-526 (2003).  https://doi.org/10.1557/PROC-762-A15.2
  142. J. B. Baxter, F. Wu, and E. S.  Aydil, “Growth Mechanism and Characterization of Zinc Oxide Hexagonal Columns,” Appl. Phys. Lett. 83, 3797 (2003). https://aip.scitation.org/doi/10.1063/1.1624467
  143. S. Agarwal. B. Hoex, M. C. M. van de Sanden, D. Maroudas and E. S. Aydil “Absolute densities of N and Excited N2 in an N2 Plasma,” Appl. Phys. Lett. 83, 4918-4920 (2003). https://aip.scitation.org/doi/10.1063/1.1630843
  144. J. B. Baxter, R. E. M. W. Bessems, and E. S. Aydil, “Growth and Characterization of ZnO Nanowires,” Materials Research Society Symposium Proceedings 776, Q7.9, 101-106 (2003).  https://doi.org/10.1557/PROC-776-Q7.9
  145. S. Sriraman, P. Mahalingam, E. S. Aydil, D. Maroudas, “Mechanism and Energetics of Dimerization of SiH2 Radicals on H-Terminated Si (001)-(2x1) Surfaces,” Surf. Sci. Lett. 540, L623-L630 (2003). https://doi.org/10.1016/S0039-6028(03)00869-0
  146. T. W. Kim and E. S. Aydil, “Experimental and Theoretical Study of Two-Dimensional Ion Flux Uniformity at the Wafer Plane in Inductively Coupled Plasmas,” IEEE T. Plasma Sci. 31, 614 (2003). https://ieeexplore.ieee.org/document/1221840
  147. T. W. Kim and E. S. Aydil, “Spatial and Temporal Variation of Ion Flux in Presence of an Instability in Inductively Coupled SF6 Plasmas,” Plasma Sources Sci. T. 12, 148 (2003). https://doi.org/10.1088/0963-0252/12/2/304
  148. T. W. Kim and E. S. Aydil, “Effects of Chamber Wall Conditions on Cl Concentration and Si Etch rate Uniformity in Plasma Etching Reactors,” J. Electrochem. Soc.150, 418 (2003). https://dx.doi.org/10.1149/1.1578481
  149. D. C. Marra, W. M. M. Kessels, M. C. M. Van de Sanden, K. Kashefizadeh, and E. S. Aydil, “In Situ Infrared Study of the Role of Ion Flux and Substrate Temperature on a-Si:H Surface Composition,” Surf. Sci. 530, 1-16 (2003). https://dx.doi.org/10.1016/S0039-6028(03)00396-0
  150. S. J. Ullal. T. W. Kim, V. Vahedi, and E. S. Aydil, “Relation Between the Ion Flux, Gas Phase Composition, and Wall Conditions in Chlorine Plasma Etching of Silicon,” J. Vac. Sci. Technol. A 21589 (2003). https://avs.scitation.org/doi/10.1116/1.1562176
  151. A. Takano and E. S. Aydil, “Incorporation of Cl into Hydrogenated Amorphous Silicon without Optical Band Gap Widening,” Jpn. J. Appl. Phys. 41, L1357 (2002). https://doi.org/10.1143/JJAP.41.L1357
  152. T. W. Kim and E. S. Aydil, “Two Dimensional Ion Flux Distributions in Inductively coupled Plasmas: Effect of Adding Electronegative Gases to Ar,” J. Appl. Phys. 92, 6444 (2002). https://aip.scitation.org/doi/10.1063/1.1517733
  153. S. Agarwal, A. Takano, M. C. M. Van de Sanden, D. Maroudas, and E. S. Aydil, “Abstraction of Atomic Hydrogen by Atomic Deuterium from an Amorphous Hydrogenated Silicon Surface,” J. Chem. Phys. 117, 10805-10816 (2002). https://aip.scitation.org/doi/10.1063/1.1522400
  154. S. J. Ullal, H. Singh, J. Daugherty, V. Vahedi, E. S.  Aydil, “Formation and Removal of Composite Halogenated Silicon Oxide and Fluorocarbon Films Deposited on Chamber Walls During Plasma Etching of Multiple Film Stacks,” J. Vac. Sci. Technol. B 20, 1939 (2002). https://doi.org/10.1116/1.1502698
  155. S. Sriraman, E. S. Aydil, and D. Maroudas, “Atomic-Scale Analysis of Deposition and Characterization of a-Si:H Thin Films Grown from SiH Radical Precursor,” J. Appl. Phys. 92, 842-852 (2002). https://aip.scitation.org/doi/10.1063/1.1483920
  156. T. W. Kim, S. J. Ullal, V. Vahedi, and E. S. Aydil, “An On-Wafer Probe Array for Measuring Two-Dimensional Ion Flux Distributions in Plasma Reactors,” Rev. Sci. Instrum. 73, 3494 (2002). https://aip.scitation.org/doi/10.1063/1.1502445
  157. S. Sriraman, S.  Agarwal, E. S. Aydil, and D. Maroudas, “Mechanism of Hydrogen Induced Crystallization of Amorphous Silicon,” Nature 418, 62-65 (2002). https://www.nature.com/articles/nature00866
  158. S.  Agarwal, S. Sriraman, E. S. Aydil, and D. Maroudas, “Mechanism and Activation Energy Barrier for H Abstraction by H(D) from a-Si:H Surfaces,” Surface Science 515, L469-L474 (2002). https://doi.org/10.1016/S0039-6028(02)01879-4
  159. S. J. Ullal, H. Singh, V. Vahedi, and E. S.  Aydil, “Deposition of Silicon Oxychloride Films on Chamber Walls During Cl2/O2 Plasma Etching of Si,” J. Vac. Sci. Technol. A 20, 499 (2002). https://avs.scitation.org/doi/10.1116/1.1450578
  160. S. J. Ullal, H. Singh, J. Daugherty, V. Vahedi, and E. S. Aydil, “Maintaining Reproducible Plasma Reactor Wall Conditions: SF6Plasma Cleaning of Films Deposited on Chamber Walls During Cl2/O2 Plasma Etching of Si,” J. Vac. Sci. Technol. A 20, 1195 (2002). https://avs.scitation.org/doi/10.1116/1.1479733
  161. T. W. Kim and E. S. Aydil, “Spatial and Temporal Variation of the Ion Flux Impinging on the Wafer Surface in Presence of a Plasma Instability,” IEEE Transactions on Plasma Science 30, 120 (2002). https://ieeexplore.ieee.org/document/1003953
  162. S. Sriraman, E. S. Aydil and D. Maroudas, “Visualizing the Evolution of Surface Bond Straining During Radical-Surface Interactions in Plasma Deposition Processes,” IEEE Transactions on Plasma Science 30, 112-113 (2002). https://ieeexplore.ieee.org/document/1003949
  163. S. J. Ullal, A. R. Godfrey, E. A. Edelberg, L. B. Braly, V. Vahedi, and E. S. Aydil, “Effect of Chamber Wall Conditions on Cl and Cl2 Concentrations in an Inductively Coupled Plasma reactor,” J. Vac. Sci. Technol. A 20, 43  (2002). https://avs.scitation.org/doi/10.1116/1.1421602
  164. W. M. M. Kessels, D. C. Marra, M. C. M. Van de Sanden, and E. S. Aydil, “In Situ Probing of Surface Hydrides on Hydrogenated Amorphous Silicon Using Attenuated Total Reflection Infrared Spectroscopy,” J. Vac. Sci. Technol.20, 781-789 (2002). https://avs.scitation.org/doi/10.1116/1.1469012
  165. S. Ramalingam, E. S. Aydil, and D. Maroudas, “Molecular Dynamics Study of the Interactions of Small Thermal and Energetic Clusters with Crystalline and Amorphous Silicon Surfaces,” J. Vac. Sci.  Technol. 19, 634-644  (2001). https://avs.scitation.org/doi/abs/10.1116/1.1362682
  166. E. S. Aydil, D. Maroudas, D. C. Marra, W. M.M. Kessels, S. Agarwal, S. Ramalingam, S. Sriraman, M. C. M. Van de Sanden, and A. Takano, “In Situ Probing and Atomistic Simulation of a-Si:H Plasma Deposition,” Materials Research Society Symposium Proceedings 664, A1.1.1 (2001).  https://doi.org/10.1557/PROC-664-A1.1
  167. D. Y. Takamoto, E. S. Aydil, J. A. Zasadzinski, A. T. Ivanova, D. K. Schwartz, T. Yang, and P. S. Cremer, “Stable Ordering in Langmuir Blodgett Films,” Science 293, 1292  (2001). https://dx.doi.org/10.1126/science.1060018
  168. S. P. Walch, S. Ramalingam, S. Sriraman, E. S. Aydil, and D. Maroudas, “Mechanism and Energetics of SiH3 Adsorption on the Pristine Si(001)- (2´1) Surface,” Chem. Phys. Lett. 344, 249-255 (2001). https://dx.doi.org/10.1016/S0009-2614(01)00777-1
  169. A. R. Godfrey, S. J. Ullal, L. B. Braly, E. A. Edelberg, V. Vahedi, and E. S. Aydil, “A New Diagnostic Method for Monitoring Plasma Reactor Walls: Multiple Total Internal Reflection Fourier Transform Infrared Surface Probe,” Rev. Sci. Instrum. 72, 3260 (2001). https://aip.scitation.org/doi/pdf/10.1063/1.1382638
  170. S. Ramalingam, S. Sriraman, E. S. Aydil, and D. Maroudas, “Evolution, Structure, Morphology and Reactivity of Hydrogenated Amorphous Silicon Surfaces Grown by Molecular-Dynamics Simulation,” Appl. Phys. Lett .78, 2685-2687 (2001). https://aip.scitation.org/doi/10.1063/1.1367298
  171. W. M. M. Kessels, A. H. M. Smets, D. C. Marra, E. S. Aydil, D. C. Schram, and, M. C. M. van de Sanden, “On the Growth Mechanism of a-Si:H,” Thin Solid Films 383, 154-160 (2001). https://dsx.doi.org/10.1016/S0040-6090(00)01594-7
  172. S. P. Walch, S. Ramalingam, E. S. Aydil, and D. Maroudas, “Mechanism and Energetics of Dissociative Adsorption of SiH3 on the Hydrogen Terminated Si (001)-(2x1) Surface,” Chemical Physics Letters 329, 304-310 (2000). https://doi.org/10.1016/S0009-2614(00)01007-1
  173. D. C. Marra, E. S. Aydil, S. J. Joo, E. Yoon, and V. I. Srdanov, “Angle-Dependent Photoluminescence Spectra of Hydrogenated Amorphous Silicon Thin Films,” Appl. Phys. Lett. 77, 3346 (2000). https://aip.scitation.org/doi/10.1063/1.1326837
  174. S. Sriraman, S. Ramalingam, E. S. Aydil, and D. Maroudas, “Abstraction of Hydrogen by SiH Radicals from Hydrogenated Amorphous Silicon Surfaces,” Surf. Sci. Lett. 459, L475-L481 (2000). https://doi.org/10.1016/S0039-6028(00)00553-7
  175. N. A. Alcantar, E. S. Aydil, J. N. Israelachvili, “Polyethylene Glycol Coated Biocompatible Surfaces,” J. Biomed. Mater. Res. 51, 343 (2000). https://doi.org/10.1002/1097-4636(20000905)51:3<343::AID-JBM7>3.0.CO;2-D
  176. S. Ramalingam, P. Mahalingam, E. S. Aydil, and D. Maroudas, “Theoretical Study of the Interactions of SiH2 Radicals with Silicon Surfaces,” J. Appl. Phys. 86, 5497-5508 (1999). https://aip.scitation.org/doi/abs/10.1063/1.371552
  177. E. A. Edelberg and E. S. Aydil, “Modeling of the Sheath and the Energy Distribution of Ions Bombarding rf-Biased Substrates in High Density Plasma Reactors and Comparison to Experimental Measurements,” J. Appl. Phys. 86, 4799-4812(1999). https://aip.scitation.org/doi/10.1063/1.371446
  178. D. Maroudas, S. Ramalingam, and E. S. Aydil, “ Atomic-Scale Modeling of Plasma-Surface Interactions in the PECVD of Silicon,” Proceedings of the Electrochemical Society, ECS Softbound series, PV 98-23, Pennington, New Jersey, p. 179-190 (1999).
  179. E. A. Edelberg, A. J. Perry, N. Benjamin, and E. S. Aydil, “Compact Floating Ion Energy Analyzer for Measuring Distributions of Ions Bombarding Radio-Frequency Biased Electrode Surfaces,” Rev. Sci. Instrum. 70, 2689(1999). https://aip.scitation.org/doi/10.1063/1.1149829
  180. S. Ramalingam, D. Maroudas, and E. S. Aydil, “Atomistic Simulation Study of the Interactions of SiH3Radicals with Silicon Surfaces,” J. Appl. Phys. 86, 2872-2888 (1999). https://aip.scitation.org/doi/10.1063/1.371136
  181. N. A. Alcantar, E. S. Aydil, and J. Israelachvili. “Effect of Water Plasma on Silica Surfaces: Synthesis, Characterization and Applications,” in Fundamental and Applied Aspects of Chemically Modified Surfaces, edited by J. Blitz and C. Little, The Royal Society of Chemistry (1999).
  182. B. F. Hanyaloglu, A. Aydinli, M. Oye, and E. S. Aydil, “Plasma Enhanced Chemical Vapor Deposition of Low Dielectric Constant Parylene-F Intermetal Dielectric Films,” Appl. Phys. Lett.74, 606 (1999). https://dx.doi.org/10.1063/1.123160
  183. E. A. Edelberg, A. Perry, N. Benjamin, and E. S. Aydil, “Energy Distribution of Ions Bombarding Biased Electrodes in High Density Plasma Reactors,” J. Vac. Sci. Technol.17, 506-516 (1999). https://avs.scitation.org/doi/10.1116/1.581612
  184. S. Ramalingam, D. Maroudas, and E. S. Aydil, “Visualizing Radical-Surface Interactions in Plasma Deposition Processes: Reactivity of SiH3 Radicals with Si Surfaces,” IEEE Transactions on Plasma Science 27, 104-105 (1999). https://dx.doi.org/10.1109/27.763067
  185. S. J. Joo, S. H. Lim, E. Yoon, W. C. Choi, E. E. Kim, D. C. Marra, and E. S. Aydil, “Visible Photoluminescence at Room Temperature from a-Si:H Films grown by Ultrahigh Vacuum Electron Cyclotron Resonance  Chemical Vapor Deposition,” Journal of the Korean Physical Society 35, S1025 (1998). https://dx.doi.org/10.3938/jkps.30.580
  186. S. Ramalingam, D. Maroudas, E. S. Aydil, and S. P. Walch, “Abstraction of Hydrogen by SiH3 from Hydrogen Terminated Si(001)-(2x1) Surfaces,” Surface Science Letters 418, L8-L13 (1998). https://dx.doi.org/10.1103/PhysRevB.52.8283
  187. D. C. Marra, E. A. Edelberg, R. L. Naone, and E. S. Aydil, “Silicon Hydride Composition of Plasma-Deposited Hydrogenated Amorphous and Nanocrystalline Silicon Films and Surfaces,” J. Vac. Sci. Technol. A 16, 3199-3210 (1998). https://avs.scitation.org/doi/pdf/10.1116/1.581520
  188. S. Ramalingam, D. Maroudas, and E. S. Aydil, “Interaction of SiH Radicals with Silicon Surfaces: An Atomic Scale Simulation Study,” J. Appl. Phys. 84, 3895-3911 (1998). https://aip.scitation.org/doi/10.1063/1.368569
  189. B. F. Hanyaloglu and E. S. Aydil, “Low temperature Plasma Deposition of Silicon Nitride from Silane and Nitrogen Plasmas,” J. Vac. Sci. Technol. A 16, 2794 (1998). https://avs.scitation.org/doi/10.1116/1.581424
  190. S. Ramalingam, D. Maroudas, and E. S. Aydil, “Atomic-Scale Analysis of Plasma Enhanced Chemical Vapor Deposition From SiH4/H2 Plasmas on Si Substrates,” Materials Research Society Symposium Proceedings 507, 673-678 (1998).
  191. D. C. Marra, E. A. Edelberg, R. L. Naone, and E. S. Aydil, “Effect of H2 Dilution on the Surface Composition of Plasma-Deposited Silicon Films from SiH4,” Appl. Surf. Sci. 133, 148-151 (1998). https://doi.org/10.1016/S0169-4332(98)00214-1
  192. E. S. Aydil, B. O. M. Quiniou, J. T. C. Lee, J. A. Gregus, and R. A. Gottscho, “Incidence Angle Distributions of Ions Bombarding Grounded Surfaces in High Density Plasma Reactors,” Materials Science in Semiconductor Processing 1, 75 (1998).https://dx.doi.org/10.1016/S1369-8001(98)00003-1
  193. S. M. Han and E. S. Aydil, “Reasons for Lower Dielectric Constant of Fluorinated Silicon Dioxide Films,” J. Appl. Phys. 83, 2172 (1998). https://aip.scitation.org/doi/10.1063/1.366955
  194. S. Ramalingam, D. Maroudas, and E. S. Aydil, “Atomistic Simulation of SiH Interactions with Silicon Surfaces During Deposition from Silane Containing Plasmas,” Appl. Phys. Lett. 72, 578-580 (1998). https://aip.scitation.org/doi/10.1063/1.120764
  195. E. Meeks, R. S. Larson, P. Ho, C. Apblett, S. M. Han, E. Edelberg, and E. S. Aydil, “Modeling of SiO2 Deposition in High Density Plasma Reactors and Comparisons of Model Predictions with Experimental Measurements,” J. Vac. Sci. Technol. A16, 544 (1998). https://avs.scitation.org/doi/10.1116/1.581096
  196. S. Ramalingam, D. Maroudas and E. S. Aydil, “Atomic Scale Analysis of the Reactivity of Radicals from Silane/Hydrogen Plasmas with Silicon Surfaces,” Materials Research Society Symposium Proceedings485, 107-112 (1998).  https://doi.org/10.1557/PROC-485-107
  197. D. C. Marra and E. S. Aydil, “Effect of H2 Addition on Surface Reactions during CF4/H2 Plasma Etching of Silicon and Silicon Dioxide Films,” Proceedings of the Electrochemical Society, ECS Softbound series, Pennington, New Jersey, PV 97-30, 12 (1998).
  198. S. Ramalingam, A. Lopez, D. Maroudas and E. S. Aydil, “Computational Atomic Scale Study of the Reactivity of Molecular Fragments from SiH4/H2 Plasma with Amorphous Silicon Surfaces,” Proceedings of the Electrochemical Society, ECS Softbound seriesPV 97-30, Pennington, New Jersey, 35 (1998).
  199. S. M. Han and E. S. Aydil, “Structure and Chemical Composition of Fluorinated SiO2 Films Deposited Using SiF4/O2 Plasmas,” J. Vac. Sci. Technol. A 15, 2893 (1997). https://avs.scitation.org/doi/10.1116/1.580845
  200. S. M. Han and E. S. Aydil, “Detection of Combinative Infrared Absorption Bands in Thin Silicon Dioxide Films,” Appl. Phys. Lett.70, 3269 (1997). https://aip.scitation.org/doi/pdf/10.1063/1.118424
  201. D. C. Marra and E. S. Aydil, “Effect of H2 Addition on Surface Reactions During CF4/H2 Plasma Etching of Silicon and Silicon Dioxide Films,” J. Vac. Sci. Technol. A 15, 2508 (1997). https://avs.scitation.org/doi/10.1116/1.580762
  202. S. M. Han and E. S. Aydil, “Silanol Concentration Depth Profiling During Plasma Deposition of SiO2 using Multiple Internal Reflection Infrared Spectroscopy,” J. Electrochem. Soc. 144, 3963 (1997). https://dx.doi.org/10.1149/1.1838119
  203. E. S. Aydil and R. A. Gottscho, “Probing Plasma/Surface Interactions,” Solid State Technology 40 (10), 181 (October, 1997).
  204. E. Edelberg, S. Bergh, R. Naone, M. Hall, and E. S. Aydil, “Luminescence from Plasma Deposited Silicon Films,” J. Appl. Phys.  81, 2410 (1997). https://aip.scitation.org/doi/abs/10.1063/1.364247
  205. S. M. Han and E. S. Aydil, “Plasma and Surface Diagnostics During Plasma Enhanced Chemical Vapor Deposition of SiO2 from SiH4/O2/Ar Discharges,” Thin Solid Films 291, 427 (1996). https://doi.org/10.1016/S0040-6090(96)09024-4
  206. D. Tretheway, and E. S. Aydil, “Modeling of Heat Transport and Wafer Heating Effects during Plasma Etching” J. Electrochem. Soc. 143, 3674 (1996). https://dx.doi.org/10.1149/1.1837270
  207. E. Edelberg, S. Bergh, R. Naone, M. Hall, and E. S. Aydil, “Visible Luminescence from Nanocrystalline Silicon Films Produced by Plasma Enhanced Chemical Vapor Deposition,” Appl. Phys. Lett. 68, 1415 (1996). https://aip.scitation.org/doi/abs/10.1063/1.116098
  208. S. M. Han and E. S. Aydil, “Study of Surface Reactions During Plasma Enhanced Chemical Vapor Deposition of SiO2 from SiH4, O2 and Ar Plasma,” J. Vac. Sci Technol. A14, 2062 (1996). https://avs.scitation.org/doi/pdf/10.1116/1.580082
  209. S. C. Deshmukh and E. S. Aydil, "An Investigation of Low Temperature SiO2 Plasma Enhanced Chemical Vapor Deposition," J. Vac. Sci. Technol. B 14, 738 (1996). https://avs.scitation.org/doi/10.1116/1.588707
  210. E. S. Aydil, "In Situ Real Time Diagnostics of Surfaces: A Review "Proceedings of the Symposium on Process Control Diagnostics and Modeling in Semiconductor Manufacturing, Electrochemical Society Softbound Series PV 95-2, p. 76 (1995).
  211. S. C. Deshmukh and E. S. Aydil, "Investigation of SiO2 Plasma Enhanced Chemical Vapor Deposition through Tetraethoxysilane Using Attenuated Total Reflection Fourier Transform Infrared Spectroscopy," J. Vac. Sci. Technol.  A13, 2355-2367 (1995). https://avs.scitation.org/doi/abs/10.1116/1.579521
  212. E. S. Aydil, Z. H. Zhou, R. A. Gottscho, and Y. J. Chabal, "Real Time In Situ monitoring of Surfaces During Glow Discharge Processing: NH3 and H2 Plasma Passivation of GaAs," J. Vac. Sci. Technol. B 13, 258 (1995). https://avs.scitation.org/doi/10.1116/1.588361
  213. E. S. Aydil, "Plasma Etching," Encyclopedia of Applied Physics, American Institute of Physics and VCH Publishers, New York, Vol. 14, 171 (1995).
  214. S. C. Deshmukh and E. S. Aydil, "Low Temperature Plasma Enhanced Chemical Vapor Deposition of SiO2," Appl. Phys. Lett.  65, 3185 (1994). https://aip.scitation.org/doi/10.1063/1.112475
  215. E. S. Aydil, R. A. Gottscho, and Y. J. Chabal, "Real Time Monitoring of Surface Chemistry During Plasma Processing," Pure and Applied Chemistry 66, 1381 (1994). https://dx.doi.org/10.1002/chin.199452320
  216. E. S. Aydil and R. A. Gottscho, "Plasma Passivation of III-V Semiconductor Surfaces," in Hydrogen in Compound Semiconductors, edited by S. Pearton, Trans Tech Publications Materials Science Forum Series, Vol. 148-149, 159 (1994).
  217. J. A. Mucha, D. W. Hess, and E. S. Aydil, "Chapter 5: Plasma Etching" in Introduction to Microlithography, edited by L. F. Thompson, C. G. Willson, and M. J. Bowden, American Chemical Society, Washington D.C., pp. 377-507 (1994).
  218. Z. H. Zhou, E. S. Aydil, R. A. Gottscho, Y. J. Chabal, and R. Reif, "Real Time Monitoring of Silicon Surface Cleaning Using H2 and NH3 Plasmas," Proceedings of the Symposium on Highly Selective Dry Etching and Damage Control, Electrochemical Society Softbound Series Vol. 93-21, Pennington, New Jersey, p. 35, (1993).
  219. E. S. Aydil, J. A. Gregus, M. A. Jarnyk, and R. A. Gottscho, "Multiple Steady States and Abrupt Transitions in an ECR Plasma Reactor," Proceedings of the Symposium on Highly Selective Dry Etching and Damage Control, Electrochemical Society Softbound Series Vol. 93-21, Pennington, New Jersey, p. 76, (1993).
  220. E. S. Aydil, Z. H. Zhou, R. A. Gottscho, and Y. J. Chabal, "Real Time In Situ Monitoring of Surface Reactions During Plasma Passivation of GaAs," Proceedings of the Eighteenth State-of-the-art Program on Compound Semiconductors (SOTAPOCS XVIII), Electrochemical Society Softbound Series Vol. 93-27, Pennington, New Jersey, p. 150 (1993).
  221. E. S. Aydil, J. A. Gregus, and R. A. Gottscho, "Electron Cyclotron Resonance Plasma Reactor for Cryogenic Etching," Rev. Sci. Instrum .64, 3572-3584(1993). https://aip.scitation.org/doi/abs/10.1063/1.1144284
  222. M. A. Jarnyk, J. A. Gregus, E. S. Aydil, and R. A. Gottscho, "Control of an Unstable Electron Cyclotron Resonance Plasma," Appl. Phys. Lett.  62, 2039 (1993). https://aip.scitation.org/doi/10.1063/1.109472
  223. E. S. Aydil, J. A. Gregus, and R. A. Gottscho, "Multiple Steady States in Electron Cyclotron Resonance Plasma Reactors," J. Vac. Sci. Technol. A 11, 2883 (1993). https://avs.scitation.org/doi/10.1116/1.578663
  224. Z. Zhou, E. S. Aydil, R. A. Gottscho, Y. J. Chabal, and R. Reif, "Real Time, In Situ Monitoring of Room Temperature Silicon Surface Cleaning Using Hydrogen and Ammonia Plasmas," J. Electrochem. Soc. 140, 3316 (1993). https://dx.doi.org/10.1149/1.2221029
  225. E. S. Aydil, Z. Zhou, K. P. Giapis, Y. J. Chabal, J. A. Gregus, and R. A. Gottscho, "Real Time, In Situ Monitoring of Surface Reactions During Plasma Passivation of GaAs," Appl. Phys. Lett. 62, 3156 (1993). https://aip.scitation.org/doi/10.1063/1.109113
  226. E. S. Aydil, K. P. Giapis, R. A. Gottscho, V. M. Donnelly, and E. Yoon, "Ammonia Plasma Passivation of GaAs in Downstream Microwave and RF Parallel Plate Plasma Reactors," J. Vac. Sci. Technol. B 11, 195 (1993). https://avs.scitation.org/doi/10.1116/1.586703
  227. E. S. Aydil and D. J. Economou, "Modeling of Plasma Etching Reactors Including Wafer Heating Effects," J. Electrochem. Soc.140, 1471 (1993). https://dx.doi.org/10.1149/1.2221582
  228. E. S. Aydil and D. J. Economou, "Modeling of Plasma Etching Reactors Including Wafer Heating Effects," in The Proceedings of the Ninth Symposium on Plasma Processing, PV 93-14, G. S. Mathad and D. W. Hess, editors, p. 22, The Electrochemical Society Softbound Proceedings Series, Pennington, New Jersey, (1993).
  229. E. S. Aydil and D. J. Economou, "Theoretical and Experimental Investigations of Chlorine RF Glow Discharges: II. Experimental," J. Electrochem. Soc. 139, 1406 (1992). https:"//dx.doi.org/10.1149/1.2069420
  230. E. S. Aydil and D. J. Economou, "Theoretical and Experimental Investigations of Chlorine RF Glow Discharges: I. Theoretical," J. Electrochem. Soc. 139, 1396 (1992). https:/dx.doi.org/10.1149/1.2069419
  231. D. Economou, E. S. Aydil and G. Barna, "In Situ Monitoring of Etching Uniformity in Plasma Reactors," Solid State Technology 34 (4), 107 (April, 1991).
  232. E. S. Aydil and D. J. Economou, "Multiple Steady States in a Radio Frequency Chlorine Glow Discharge," J. Appl. Phys.69, 109 (1991). https://aip.scitation.org/doi/abs/10.1063/1.347746
  233. E. S. Aydil and D. J. Economou, "Experimental and Modeling Studies of Chlorine RF Glow Discharges," in The Proceedings of the Eighth Symposium on Plasma ProcessingPV 90-14, G. S. Mathad and D. W. Hess, editors, p. 77, The Electrochemical Society Softbound Proceedings Series, Pennington, NJ, (1990)

Mentoring style: informal, accessible, mindful of work-life balance, mentored 15 years

My Science: Solar Cells, Plasmas, Materials synthesis